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Abstract

We provide a highly tractable rebalancing rule for dynamic portfolio choice problems with
return predictability and transaction costs. Our rebalancing rule is a linear function of the return
predicting factors and can be utilized in a wide spectrum of portfolio choice models with minimal
assumptions. Linear rebalancing rules enable to compute exact and efficient formulations of
portfolio choice models with linear constraints, proportional and nonlinear transaction costs,
and terminal wealth objectives. We illustrate the implementation of the best linear rebalancing
rule in the context of portfolio execution with positivity constraints in the presence of short-
term predictability. We show that there exists a considerable performance gain in using linear
rebalancing rules compared to various static and dynamic heuristics.

1. Introduction

Dynamic portfolio allocation has been a central objective for institutional investors in active asset
management due to changes in the estimates of expected future returns. A typical asset manager
observes predictions for the expected future returns using return predicting factors such as market
capitalization, book-to-market ratio, lagged returns, dividend yields, gross industrial production
and other security specific or macroeconomic variables (see for example, Chen et al. (1986), Fama
and French (1996), Goetzmann and Jorion (1993)). With the new estimates for the future returns,
the asset manager needs to update the holdings of the portfolio while aligning with the risk ob-
jectives of the fund and keeping trading costs to a minimum. On top of these tradeoffs, there are
further regulatory enforcements and diversification needs such as short-sale restriction and market
neutrality (or a specific industry neutrality) that complicate the portfolio allocation in a dynamic
fashion. Characterizing an optimal rebalancing rule under these complex dynamics and restrictions
is a daunting task if not impossible.

Many dynamic portfolio choice models need to impose restrictive assumptions, yet often un-
realistic, about each ingredient of the model i.e., return predictability, risk measure, transaction
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costs and constraints, in order to achieve a tractable solution. The analytical structure will be very
sensitive to these assumptions and the tractability of the model will disappear easily as soon as
some simple relaxations are needed in the model. In this paper, we will overcome this rigidity by
proposing a simple rebalancing rule that is a linear function of the predicting factors. Then, we
solve for the optimal parameters of the linear functional form. As long as the original optimization
problem is a convex programming problem, the modified optimization problem that seeks to find
the optimal parameters of the linear decision rule will be a convex programming problem.

We present a large class of dynamic portfolio choice models that differ in their modeling of risk
measures, transaction costs and constraints which can be formulated efficiently using a linear deci-
sion rule. Specifically, we introduce a quadratic utility function on the terminal wealth, proportional
and nonlinear transaction cost functions and finally linear equality and inequality constraints. In
these cases, the portfolio optimization problem reduces to a deterministic convex optimization pro-
gram and the optimal parameters of the linear policy can be solved with any standard off-the-shelf
solver. In the remaining cases, the optimal parameters can be solved via the sampling techniques
available from the sample average and stochastic approximation literature (see for example Shapiro
(2003) and Nemirovski et al. (2009)).

Finally, we illustrate our methodology empirically in the context of portfolio execution, the
execution of a large long position. In order to highlight the performance gain using linear decision
rules, we use the identical discrete-time setup of Garleanu and Pedersen (2009) that follows the
classical linear dynamics, quadratic cost model from the control literature. However, we now
introduce linear inequality constraints on portfolio positions in order to enforce decreasing positions
in the security during the execution horizon. We estimate the model parameters from transactions
data and propose an analogue of value and momentum predictors in a high-frequency setting. The
simulation that uses these factors and the estimated parameters show that the best linear policy
performs better than the deterministic policy, model predictive control and a projected version of
the optimal policy proposed by Garleanu and Pedersen (2009).

The rest of this paper is organized as follows: In Section 1.1, we review the related literature.
In Section 2, we present the abstract form of a dynamic portfolio choice model and provide various
specific problems that satisfy the assumptions of the abstract model. We formally describe the
class of linear decision rules in Section 2 and provide solution techniques in order to find the
optimal parameters of the linear policy. In Section 4, we provide efficient and exact formulations
of dynamic portfolio choice models using linear decision models while incorporating linear equality
and inequality constraints, proportional and nonlinear transaction costs and a measure of terminal
wealth risk. In Section 5, we apply our methodology in an optimal execution problem and evaluate
the performance of the best linear policy. Finally, in Section 6 we conclude and discuss some future
directions.
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1.1. Related literature

Our paper is related to two different strands of literature, dynamic portfolio choice with or without
return predictability and transaction costs and the use of linear decision rules in the optimal control
problems.

The vast literature on dynamic portfolio choice starts with the seminal paper by Merton (1971)
which studies the optimal dynamic allocation of one risky asset and one bond in the portfolio in a
continuous-time setting. Following this seminal paper, there has been a significant literature aiming
to incorporate the impact of various frictions on the optimal portfolio choice. For a survey on this
literature, see Cvitanic (2001).

Constantinides (1986) is an early example that studies the impact of proportional transaction
costs on the optimal investment decision and the liquidity premium in the context of CAPM.
Davis and Norman (1990), Dumas and Luciano (1991) and Shreve and Soner (1994) provide the
exact solution for the optimal investment and consumption decision by formally characterizing the
trade and no-trade regions. One drawback of all these papers is that the optimal solution is only
computed in the case of a single stock and bond. Liu (2004) extends this result to multiple assets
but assumes that asset returns are not correlated.

There is a growing literature on portfolio selection that incorporates return predictability with
transaction costs. Balduzzi and Lynch (1999) and Lynch and Balduzzi (2000) illustrate the impact
of return predictability and transaction costs on the utility costs and the optimal rebalancing rule
by discretizing the state space of the dynamic program. With a similar state space discretization,
Lynch and Tan (2010) model the dynamic portfolio decision with multiple risky assets under re-
turn predictability and transaction costs and provide numerical experiments with two risky assets.
Recently, Brown and Smith (2010) provides heuristic trading strategies and dual bounds for a gen-
eral dynamic portfolio optimization problem with transaction costs and return predictability. Our
paper is closely related to these papers. However, our approach with linear decision rules scales
better with multiple assets compared to that of discretization methods as grid approximations with
multiple risky assets will suffer from the curse of dimensionality.

Brandt et al. (2009) parameterizes the rebalancing rule as a function of security characteristics
and estimates the parameters of the rule from empirical data without modeling the distribution of
the returns and the return predicting factors. Even though our approach is also a linear parametriza-
tion of return predicting factors, there are fundamental differences between our approach and that
of Brandt et al. (2009). First, the class of linear polices we consider is much larger than the specific
linear functional form in Brandt et al. (2009). In our approach the parameters are time-varying and
cross-sectionally different for each security. Second, the extensions provided in Brandt et al. (2009)
for imposing positivity constraints and transaction costs are ad-hoc and cannot be generalized to
arbitrary convex constraints or transaction cost functions.

Garleanu and Pedersen (2009) achieve a closed-form solution for a model with linear dynamics
in return predictors and quadratic function for transaction costs and quadratic penalty term for
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risk. However, the analytic solution is highly sensitive to the quadratic cost structure with linear
dynamics (see Bertsekas (2000)). This special case cannot handle any inequality constraints on
portfolio positions, non-quadratic transactions costs, such as proportional transaction cost, or risk
considerations on terminal wealth. On the other hand, our approach can be implemented efficiently
in these realistic scenarios and provides more flexibility in the objective function of the investor.

The use of linear decision rules in optimal control problems has been abundant in the litara-
ture. This approximation technique has attracted considerable interest recently in robust and
two-stage adaptive optimization context (see Ben-Tal et al. (2004), Ben-Tal et al. (2005), Chen
et al. (2007), Chen et al. (2008), Bertsimas et al. (2010) and Bertsimas and Goyal (2011)). Shapiro
and Nemirovski (2005) illustrate that linear decision rules can reduce the complexity of multistage
stochastic programming problems. Kuhn et al. (2009) proposes an efficient method to estimate the
loss of optimality incurred by linear decision rule approximation.

In this strand of literature, we believe the closest works to the methodology described in our
paper are Calafiore (2009) and Skaf and Boyd (2010). Both of these papers use linear decision rules
to address dynamic portfolio choice problems with proportional transaction costs without return
predictability. Calafiore (2009) compute lower and upper bounds on the expected transaction costs
and solves two convex optimization problems to get upper and lower bounds on the optimal value
of the simplified dynamic optimization program with linear decision rules. On the other hand, Skaf
and Boyd (2010) study the dynamic portfolio choice problem as an application to their general
methodology of using affine controllers on convex stochastic programs. They first linearize the
dynamics of the wealth process and then solve the resulting convex optimization via sampling
techniques. The foremost difference between our approach and these papers is the modeling of
return predictability. Hence, the optimal rebalancing rule in our model is a linear function of the
predicting factors. Furthermore, we derive exact reductions to deterministic convex programs in
the cases of proportional and nonlinear transaction costs.

2. Dynamic Portfolio Choice with Return Predictability and Transac-
tion Costs

We consider a dynamic portfolio choice problem with return predictability in security returns
and costly trading. The number of investable securities is N , time is discrete and indexed by
t = 1, . . . , T , where T is the investment horizon. Each security i has a price change of ri,t+1 from
time t to t + 1. We collect these price changes in the return vector rt+1 , (r1,t+1, . . . , rN,t+1)>.
We assume that security returns can be predicted by a set of K factors. These factors could be
security specific characteristics such as market capitalization of the stock, book-to-market ratio of
the stock, lagged twelve month return of the stock or dividend yields (see Fama and French (1996)
and Goetzmann and Jorion (1993)). Alternatively, they could be macroeconomic signals that affect
the return of each security, e.g., inflation, treasury bill rate, industrial production (see Chen et al.
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(1986) for a complete list of variables).
We let xi,t denote the number of shares that the investor holds in ith security at time t. We

collect the portfolio holdings in each security in the vector xt , (x1,t, . . . , xN,t)>. Similarly, let the
trade vector ut , (u1,t+1, . . . , uN,t+1)> be the amount of shares that the investor wants to trade at
the end of tth period when he observes ft with a portfolio xt. Consequently, we have the following
linear dynamics for our position and trade vector:

xt+1 = xt + ut+1

We assume very general dynamics, possibly nonlinear, for the evolution of returns and factors.

Assumption 1 (Dynamics). On a complete filtered probability space
(
Ω,F , {Ft}t≥0 ,P

)
, we assume

that factors and returns evolve according to

ft+1 = G(ft, . . . , f1, εt+1),

rt+1 = H(ft, . . . , f1, εt+1),

where H(.) and G(.) are known functions and the filtration F , {Ft}t≥0 is generated by the exoge-
nous noise terms εt+1 and εt+1.

Let the time series vector of portfolio positions, factors and returns be given by x , (x0, x1, . . . , xT ),
f , (f1, . . . , fT ), and r , (r1, . . . , rT ) respectively. Let U ⊆ RN × . . . × RN denote the set of all
feasible trade sequences u = (u1, . . . , uT ). The investor’s trading decisions are determined by a
policy π that selects a sequences of trades u in U for each realization of r and f . We let U be the
set of all policies. We assume that the investor’s trading decisions are nonanticipative in that the
trade vector ut+1 in period t depends only on what is known at the beginning of period t. Formally,
we require policies to be adapted to the filtration F such that a policy’s selection of the first t trades
(u1, . . . , ut) must be measurable with respect to Ft. Let UF be the set of all nonanticipative policies.

The objective of the investor is to select a nonanticipative policy π that maximizes the expected
total payoff. Since rt+1 is a known function of ft, the extended and real-valued reward function can
purely be written by the portfolio position vector, x and the factor vector, f . The investor wants
to solve the following maximization problem:

(1) sup
π∈UF

Eπ[p(x, f)].

Assumption 2 (Concave objective function). We assume that the total reward function p(x, f) is
jointly concave in x and f and the set of all nonanticipative policies UF is convex.

In this paper, we will consider dynamic portfolio choice models that satisfy Assumptions 1 and 2.
We will now provide specific examples of dynamic portfolio choice models that satisfy Assumptions
1 and 2.
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Example 1 (Discrete-time model in Garleanu and Pedersen (2009)). This model has the following
dynamics which fit into our general framework.

rt+1 = µt +Bft + εt+1(2)

ft+1 = (I − Φ) ft + εt+1

where µt is the deterministic “fair return,” e.g., from the CAPM, B is a constant matrix of factor
loadings, Φ is a matrix of mean reversion coefficients for the factors. It is assumed that Vart(εt+1) =
Σ and Vart(εt+1) = Ψ. Trading is costly and the transaction cost to execute ut = xt − xt−1 shares,
is given by

TC(ut) ,
1
2utΛut,

where Λ measures the level of trading costs.
The investor’s objective function is to choose the trading strategy (u1, . . . , uT ) to maximize

discounted future expected excess return penalized for risks and transaction costs:

maximize
π∈UF

E
[
T∑
t=1

ρt
(
x>t (rt+1 − µt)−

γ

2x
>
t Σxt −

1
2u
>
t Λut

)]

= maximize
π∈UF

E
[
T∑
t=1

ρt
(
x>t (Bft)−

γ

2x
>
t Σxt −

1
2u
>
t Λut

)]
(3)

where ρ is the discount factor and γ is the coefficient of risk aversion. Garleanu and Pedersen (2009)
notes that this objective function belongs to an investor who is compensated based on his performance
relative to a benchmark. Hence, x>t (Bft) measures the excess return over the benchmark, and
x>t Σxt measures the variance of the tracking error relative to the benchmark 1.

This problem can be solved fairly easily using the classical results from the linear-quadratic
control (LQC) literature. On the other hand, the tractability of this model is very sensitive to
quadratic cost structure with linear dynamics (see Bertsekas (2000)) in xt and ut. This special
case cannot handle any inequality constraints on our decision variables. However, in many real
world examples, the investor’s reward function is nonlinear and the investor needs to satisfy certain
conditions related to his portfolio holdings at all times. Therefore, many examples of portfolio choice
models will not have the simple analytical structure of Example 1. In the following examples, we will
provide concrete examples of such models that will involve portfolio position or trade constraints,
different forms of transaction costs and risk measures.

Example 2 (Constraints). In practice, the most common constraint in constructing equity portfolios
is the short-sale restriction. Most of the mutual funds are enforced not to have any short positions

1See Garleanu and Pedersen (2009) for other interpretations.
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by law. This requires the portfolio optimization problem to include simple positivity constraint

xt ≥ 0 ∀t = 1, . . . , T.

We observe a similar restriction when an execution desk needs to sell or buy a large portfolio on
behalf of an investor. Due to the regulatory rules in agency trading, the execution desk is only
allowed to sell or buy during the trading horizon. In the “pure-sell” scenario, the execution desk
needs to impose the following constraint

ut ≤ 0 ∀t = 1, . . . , T.

These simple positivity or negativity constraints may appear easy to handle but the portfolio opti-
mization problem does no longer fall into LQC framework.

Example 3 (Non-quadratic transaction costs). In practice, trading costs can result from service fees
such as bid-ask spread, commissions, exchange fees which are intrinsically proportional to the trade
size. Furthermore, trading costs can also occur due to disadvantageous transaction price caused by
the price impact of the trade. The case of proportional transaction cost is a classical cost structure
which is well studied in the literature (see Constantinides (1986) and the references therein). Letting
χi be the the proportional transaction cost rate (an aggregate sum of bid-ask cost and commission
fees) for trading security i, the investor will incur a total cost of

TC(ut) ,
N∑
i=1

χi|ut,i|.

The management of the trading costs due to price impact has recently attracted considerable
interest as well (see Obizhaeva and Wang (2005) and Almgren and Chriss (2000)). In this case,
models of price impact imply a nonlinear relationship between trade size and the resulting transaction
cost. The following general transaction cost function falls under this subcategory:

TC(ut) =
N∑
i=1

χi|ut,i|β,

where β ≥ 1 and χi is the security specific proportionality constant. Example 1 only considers the
case of β = 2 as any other value will cause the model not to be in the LQC framework.

Example 4 (Terminal wealth risk). The objective function of Example 1 includes a nonstandard
penalty term to disallow taking excessive risk. A quadratic penalty term, x>t Σxt, is used in order
to satisfy the requirements of the LQC model. However, this measure of per-period risk is not very
appropriate as the investor is more concerned about the volatility of his terminal wealth as opposed
to the sum of per-period penalty terms which does not have much economic meaning. There are
other appropriate risk measures which again break down the restrictive assumptions of the LQC
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model.
Consider a quadratic utility function on the terminal wealth. Denoting the terminal wealth by

WT and the total trading cost by CT , we have

WT =
T∑
t=1

x>t rt+1

CT = 1
2

T∑
t=1

(
u>t Λut

)β
and the investor’s objective would be

maximize
π∈UF

E
[
WT − CT −

γ

2W
2
T

]
Example 5 (Maximum drawdown risk). Instead of introducing per-period penalty terms to avoid
excessive risk, a fund manager would be more interested in minimizing the probability of extreme
successive losses. Since the asset management business is solely dependent on management and
incentive fees proportional to the size of assets under management, successive losses will trigger the
start of withdrawals from the accounts and hence, jeopardize the profitability of the business.

We define maximum drawdown, MD, by the worst loss of the portfolio between any two points
of time during the investment horizon. Formally,

MD , maximize
t1,t2

− t2∑
t=t1

x>t rt+1

 .
Suppose that the fund manager wants to control the expected maximum drawdown by a certain
threshold, C. Therefore, he imposes the following constraint

E [MD] ≤ C.

This constraint certainly violates the assumptions of the LQC framework but satisfies Assumption
2.

Example 6 (Complicated dynamics). We can also relax the the dynamics in Example 1. Consider
the following generalization of the factor dynamics:

rt+1 = µt +Bt(λ+ ωt+1) + εt+1

Bt+1 = (I − Φ)Bt + εt+1,

where Et[ωt+1] = 0 and Vart[ωt+1] = Υ. In this model, the factor loading matrix, Bt, is the return
predicting factor and follows a mean-reverting process. These dynamics are very sensible as the
conditional variance of the return becomes dependent on the factor structure and time-varying, i.e.,
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Vart[rt+1] = BtΥB>t +Σ. Thus, in this case, the penalty term for risk becomes x>t
(
BtΥB>t + Σ

)
xt

and the optimization problem stated as in Example 1 does no longer fall into the LQC framework.

The dynamics and the reward functions considered in these examples satisfy our basic re-
quirements provided in Assumption 1 and Assumption 2. These examples illustrate that in many
real-world considerations for return predictability, transaction costs, risk measures and constraints,
the dynamic portfolio choice becomes difficult to solve analytically.

3. Best Linear Model

As emphasized in the examples provided in Section 2, many appropriate models for portfolio choice
do not fall into the LQC framework. Without the special restrictions as imposed in the LQC frame-
work, the optimal dynamic policy cannot be computed analytically. In this section, in order to find
an approximate solution, we will restrict our feasible policies into a subset which is parsimoniously
parameterized. Instead of solving for an optimal policy, we will solve for the optimal parameters
of the restricted subset of policies.

Consider the following restricted set of policies, linear rebalancing policies, which is obtained
by taking the affine combinations of the factors.

Definition 1. A linear policy π selecting the feasible trade sequences u = (u1, . . . , uT ) can be repre-
sented in the following form,

ut = ct +
t∑

s=1
Es,tfs t = 1, 2, . . . , T

parameterized by a collection of vectors {ct ∈ RN , 1 ≤ t ≤ T} and a collection of matrices {Es,t ∈
RN×K , 1 ≤ s ≤ t ≤ T}.

There are some important properties of linear rebalancing policies. First, these policies allow
recourse based on the evolution of the factors but in the limited linear functional form. Second, the
set of affine policies are much more general than deterministic policies as setting Es,t to matrices
of zeroes would yield the deterministic policy. Finally, if the optimization problem satisfies the
requirements of the LQC model, i.e., linear dynamics, quadratic cost, equality constraints, affine
policies will be optimal.

Note that the functional form provided in Definition 1 can be extended with basis functions as
well:

ut =
t∑

s=1
ϕs,t(fs) t = 1, 2, . . . , T.

where the collection of basis functions, ϕs,t, 1 ≤ s ≤ t ≤ T}, are real-valued functions on the state
space.
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We constrain our policies to be in the set of linear policies, denoted by L ⊆ UF. Instead
of solving the original problem in (1), an approximate solution can be obtained by solving the
following maximization problem:

(4) sup
π∈L

E[p(x, f)].

which is equivalent to

(5) sup
E,c

E[p(x, f)]

where E , (E1,1, E1,2, . . . , ET−1,T , ET,T ) and c , (c1, . . . , cT ).

Proposition 1. The optimization problem given by

maximize
E,c

E[p(x0, x1, . . . , xT , f0, f1, . . . , fT )](6)

subject to xt = xt−1 + ut t = 1, 2, . . . , T,

ut = ct +
t∑

s=1
Es,tfs t = 1, 2, . . . , T,

is a convex optimization problem.

Proof. Since p(x, f) is jointly concave in x and f , and x can be written as an affine transformation
of Es,t and ct, p(.) is jointly concave in Es,t, ct and f . Since expectation preserves concavity, the
maximization problem in (6) is a convex optimization problem. �

Note that this is a much simpler problem to solve as instead of solving for the optimal policy,
we are now solving for the optimal parameters of a suboptimal policy. There exist three solution
techniques to solve the stochastic optimization problem in (6).

• Sample average approximation (SAA).

Using Monte Carlo sampling techniques, we can generate a sample of M independent replica-
tions of the factor data, f1, . . . , fM , according to the functional form given by (1). Then, we
can compute the sample average approximation of the original objective function, h(E, c) ,
E[p(x, f)], by

ĥ(E, c) , 1
M

M∑
i=1

p(x, f i).
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Then, we solve the deterministic optimization problem given by

maximize
E,c

1
M

M∑
i=1

p(x, f i)(7)

subject to xt = xt−1 + ut t = 1, . . . , T,

ut = ct +
t∑

s=1
Es,tf

i
s t = 1, . . . , T.

Let us denote V ∗ and S the optimal value and the set of optimal solutions of the original
problem in (6), respectively, and analogously denote V̂ ∗M and ŜM the optimal value and the
set of optimal solutions of the SAA problem in (7). Under appropriate regularity conditions
(see Shapiro (2003)), we have V̂ ∗M → V ∗ and D(ŜM , S)→ 0 with probability 1 as M →∞2.

• Stochastic approximation.

Since we can stack all our decision variables, ct and Es,t, on top of each other in a single
vector z, we can rewrite the original problem in the abstract form,

maximize
z∈Θ

{h(z) , E[p(z, f)]}

where Θ is a closed and convex set. Since p(z, f) is convex for every realization of f and h(z)
is finite valued (due to Assumption 2), then (cf. Strassen (1965))

∂h(z) = E[∂zp(z, f)]

Using Monte Carlo sampling techniques, we can generate a sample of M independent repli-
cations of the factor data, f1, . . . , fM , according to the functional form given by (1). Then,
we can use a subgradient of P (z) denoted by G(z, f) ∈ ∂zp(z, f) as a stochastic subgradi-
ent. With these constructs at hand, we can employ the classical stochastic approximation
algorithm, an application of the subgradient descent method. Starting from an initial point
z0 ∈ Θ, and using a sequence of appropriately chosen stepsizes (see Nemirovski et al. (2009)
for the details), γj > 0, we update our approximate solution by the formula

zj+1 = ΠΘ
(
zj − γjG(zj , f j)

)
where the operation ΠΘ(z) denotes argminy∈Θ ‖z− y‖2.

Suppose further that z∗ is the unique optimal solution of the original problem and V ∗ be the
corresponding optimal value. Then, under certain regularity conditions, Nemirovski et al.
(2009) show that after k iterations, the expected error of the current solution in terms of the

2The assertion, D(ŜM , S) → 0 with probability 1, means that for any selection of optimal solution, (E, c) ∈ ŜM
of the SAA problem, we have dist((E, c), S) → 0 with probability 1.
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distance to z∗ is of order O( 1√
k
) and the expected error in terms of the objective value is of

order O( 1
k ).

• Efficient exact formulation. If the expectation in the objective of (6) can be computed
analytically, the stochastic program will reduce to a deterministic convex optimization. The
linear functional form helps in obtaining analytical tractability with further assumptions for
the distribution of the noise terms in (1). In Section 4, we will provide the details of these
exact formulations when the noise terms are serially independent and identically distributed
with multivariate normal distribution.

4. Efficient exact formulations

In this section, we will provide efficient exact formulations of dynamic portfolio choice problems
using the class of linear policies for our feasible set of policies. We will introduce various extensions
with constraints on portfolio holdings, transaction costs, and risk measures and show that the
stochastic program can be reduced to a deterministic convex program.

Throughout this section, we will assume that the vector constructed by stacking all factors on
top of each other, Ft , (f1, . . . , ft)>, is jointly normal with mean θt and covariance matrix Ωt. With
this assumption, the distribution of any linear policy will also be jointly normal as each policy is
affine transformations of the factors. In order to see this formally, let

(8) Mt ,
[
E1,t E2,t . . . Et,t

]
Then, we can write our trade vector as ut = ct + MtFt. With this representation, it is easy to
compute the first and second moments of ut:

µt , E(ut) = ct +Mtθt(9)

Vt , Var(ut) = MtΩtM
>
t .

Therefore, ut is normally distributed with mean µt and covariance matrix Vt. Similarly, we can
obtain the statistics for xt. Using,

xt = x0 +
t∑
i=1

ui = x0 +
t∑
i=1

(
ci +

i∑
s=1

Es,ifs

)
= dt +

t∑
s=1

Js,tfs(10)

where dt , x0 +
∑t
i=1 ci and Js,t ,

∑t
i=sEs,i. Thus, with this representation, xt is also normally

distributed with mean vector κt and covariance matrix Yt where

κt , E(xt) = dt + Ptθt(11)

Yt , Var(xt) = PtΩtP
>
t .
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and

(12) Pt ,
[
J1,t J2,t . . . Jt,t.

]
4.1. Linear constraints

We will provide formulations for linear equality and inequality constraints. These type of con-
straint appear frequently in portfolio choice due to regulatory reasons such as short sale restriction,
liquidation purposes or diversification needs such as keeping a specific industry exposure under a
certain limit. We will provide the exact formulations of such constraints when we use the class of
linear policies.

4.1.1. Equality constraints

Equality constraints in portfolio choice appear especially in portfolio execution problems when the
investor needs to liquidate a certain portfolio or construct a certain target portfolio directed by his
own investment research. Any type of equality constraints including these target portfolios can be
implemented with linear policies.

Suppose that for some period t, we need Aut = b where A ∈ RM×N and b ∈ RN . Substituting
the functional for the linear policy, the equality constraint can be written by

Act +A

(
t∑

s=1
Es,tfs

)
= b,

which is equivalent to

Act = b

AEks,t = 0 ∀(s, t, k) where s = 1, . . . , t and k = 1, . . . ,K,

and where Eks,t denotes the kth column of Es,t. Analogously, a similar computation can be used to
include linear equality constraints on the portfolio positions, xt.

4.1.2. Inequality constraints

In practice, the most common inequality constraint is the short-sale restriction. Most of the mutual
funds are enforced not to have any short positions by law. Therefore, we need to impose positivity
constraints on our portfolio positions, i.e., xt ≥ 0.

When the noise terms do not have a bounded support, such constraints can only be implemented
with probabilistic constraints for the class of linear policies. In the case of bounded noise terms,
such as the case with truncated multivariate normal distribution, the linear policies can also handle
the linear inequality constraints in the robust sense.
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Suppose that we have the following probabilistic constraint for an arbitrary time period t with
the desired confidence level of η. Then, this constraint can be implemented exactly using a second-
order cone constraint 3.

Fact 1. The chance constraint P(a>ut+b ≥ 0) ≤ η can be reduced to a second order cone constraint

(13) a> (ct +Mtθt) + b+ Φ−1(1− η)
∣∣∣∣∣∣∣∣(MtΩtM

>
t

)1/2
a

∣∣∣∣∣∣∣∣
2
≤ 0

where Mt is defined in (8).

Proof. Let µt and Vt be the mean and the variance of ut as defined in Equation (9). Then,

P(a>ut + b ≥ 0) = P(βt + σtZ ≥ 0)

where βt , a>µt+b, σt ,
∣∣∣∣∣∣∣∣(MtΩtM

>
t

)1/2
a

∣∣∣∣∣∣∣∣
2

and Z is a standard normal random variable. Then,

P(βt + σtZ ≥ 0) = P(Z ≥ −βt
σt

)

Note that P(Z ≥ −βt
σt

) is less than η if and only if −βt
σt
≥ Φ−1(1 − η) where Φ−1(y) is the inverse

function of the cumulative distribution function of a standard normal random variable. Then, our
probabilistic constraint is equivalent to

βt + Φ−1(1− η)σt ≤ 0.

Substituting the values for βt and σt, we finally obtain

a> (ct +Mtθt) + b+ Φ−1(1− η)
∣∣∣∣∣∣∣∣(MtΩtM

>
t

)1/2
a

∣∣∣∣∣∣∣∣
2
≤ 0

which is a second order cone constraint. �

A similar approach can also be used to incorporate linear inequality constraints on the portfolio
positions, xt.

4.2. Transaction costs

In this section, we will provide formulations for proportional and nonlinear transaction cost func-
tions with the class of linear policies. In practice, trading costs for small trades are mostly propor-
tional as costs due from bid-ask spread, commissions, exchange fees are intrinsically proportional to
the trade size. However, for large trades, trading costs do also include a price impact term which is

3This is a well known result in the literature, see Boyd and Vandenberghe (2004) for the derivation.
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nonlinear with respect to the trade size. However, empirical studies studying price impact models
favor nonlinear (not necessarily quadratic) transaction cost functions.

4.2.1. Proportional transaction cost

Proportional transaction costs are widely used in the portfolio choice literature. (see Constantinides
(1986) for an early example). Letting χi (per share cost of total fees due the bid-ask spread,
commission and exchange fees) be the proportional transaction cost rate for ith security, let

TC(ut) =
N∑
i=1

χi|ut,i|,

where ut,i is the amount of shares traded in the ith security.
With this representation, one needs to compute E[TC(ut)] analytically in order to solve the

optimization program using deterministic techniques. Using the class of linear policies for ut, we
can compute this expectation in closed-form:

E[TC(ut)] = E
[
N∑
i=1

χi|ut,i|
]

=
N∑
i=1

χiE
[∣∣∣µt,i +

√
Vt,iZ

∣∣∣] ,
where Z is a standard normal random variable and µt,i and Vt,i are the ith rows of the mean
vector, µt and the covariance matrix, Vt, respectively, which are the first and second moments of
ut as defined in (9). Using the properties of the folded normal distribution, and letting σt,i ,

√
Vt,i

we obtain

E[TC(ut)] =
N∑
i=1

χi

(√
2
π
σt,i exp

{
−
µ2
t,i

2σ2
t,i

}
+ µt,i

(
1− 2Φ

(
−µt,i
σt,i

)))

where Φ(y) is the cumulative distribution function of a standard normal random variable. This
expression is necessarily convex in ct,i and Es,t,i, the ith rows of ct and Es,t as the expression

E[TC(ut)] =
N∑
i=1

χiE
∣∣∣∣∣
(
ct,i +

t∑
s=1

Es,t,ifs

)∣∣∣∣∣
is the sum of the absolute values of linear functions in ct,i and Es,t,i.

4.2.2. Nonlinear transaction cost

Nonlinear trading costs due to price impact have recently attracted considerable interest as well
(see Obizhaeva and Wang (2005) and Almgren and Chriss (2000)). In these types of transaction
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cost models, there is still a security specific proportionality constant χi, due to proportional nature
of bid-ask spread, commission and exchange fees. Thus, in the presence of price impact

TC(ut) =
N∑
i=1

χi|ut,i|β,

where ut,i is the amount of shares traded in the ith security and β ≥ 1 is the estimated coefficient
of nonlinearity 4. This functional form again preserves the convexity of our optimization program
when the class of linear policies is used. Formally,

E[TC(ut)] = E
[
N∑
i=1

χi|ut,i|β
]

=
N∑
i=1

χiE
[∣∣∣µt,i + σt,iZ|β

∣∣∣]

=
N∑
i=1

χi

(2σ2
t,i

)β
2

Γ
(

1+β
2

)
√
π

1F1

(
−β2 ; 1

2;−
µ2
t,i

2σ2
t,i

)
where Γ(z) is the gamma function and 1F1(a; b; z) is confluent hypergeometric function of the first
kind.

4.3. Risk measures

Investors are more concerned about fluctuations in their terminal wealth as opposed to per-period
measures of risk. Consider an individual investor who would like to achieve a certain level of
wealth for his expenses in the retirement period. Instead of penalizing per-period fluctuations, his
main aversion would be the extreme fluctuations of his terminal wealth. Similarly, an institutional
investor would also be more interested in minimizing the risk associated with the amount of as-
sets under management (AUM) for next year as any significant drop in AUM will jeopardize the
profitability of the business.

In this section, using the class of linear policies, we will provide an efficient formulation for a
risk measure associated with the terminal wealth of the investor.

4.3.1. Terminal wealth risk

Suppose that the investor wants to maximize a quadratic-type of utility function on his terminal
wealth. He wants to maximize the dollar value of his terminal holdings penalized by the square of
his total wealth before transaction costs. Formally,

maximize
ct,Es,t

E
[
WT − CT −

γ

2W
2
T

]
,

4This is typically reported to be around 3
2 .
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where WT denotes the total wealth before transaction costs and CT denotes the total transaction
costs paid during investment horizon. This objective aims to lower the risk associated with terminal
wealth with the penalty term, γ

2W
2
T , where γ is the coefficient of investor’s risk aversion.

Suppose the investor starts with an initial position, x0 = 0. Then, we can write

WT =
T∑
t=1

(
x>t rt+1

)
,

CT =
T∑
t=1

TC(ut).

Assume that the return dynamics and transaction cost function are given as in Example 1 (with
µt = 0 for simplicity), i.e.,

rt+1 = Bft + εt+1

TC(ut) = 1
2u
>
t Λut,

where εt+1 is serially independent zero-mean noise term with conditional covariance matrix, Vart(εt+1) =
Σ and is independent of all factor data, Ft. Total transaction cost, CT by

CT =
T∑
t=1

1
2u
>
t Λut.

Proposition 2. Let the investor’s objective be

maximize
ct,Es,t

E
[
WT − CT −

γ

2W
2
T

]
.

This program can be reduced to an exact deterministic convex program.

5. Application: Optimal execution in the presence of alpha

In this section, we will provide an empirical application to illustrate the implementation of the
best-linear policy. As our empirical example, we consider a classical problem in equity agency
trading.

Agency trading in equities has witnessed tremendous growth over the past quarter of century
driven mostly by the increasing inflow of assets into the highly competitive market of institutional
asset management such as mutual, pension, and hedge funds. Due to the constant changes in mar-
ket variables, asset managers need to update the holdings of these large portfolios while minimizing
trading costs, often labeled as “execution costs,” consisting of commissions, bid/ask spreads and
more importantly, price impact from trading. For this purpose, they work closely with execution
desks in investment banks and allow them to execute the trades on their behalf so that they can
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achieve their desired portfolio with minimal transaction costs. The responsibility of the execution
desk is to find a feasible execution schedule over the client-specified trading horizon while mini-
mizing trading costs and aligning with the risk objectives of the client. This problem of finding an
optimal execution schedule has received a lot of attention in the literature since the initial paper
by Bertsimas and Lo (1998). In their model, when price impact is proportional to the number of
shares traded, the optimal execution schedule is to trade equal number of shares at each trading
time. There are number of papers that extend this model to incorporate the risk of the execution
strategy. For example, Almgren and Chriss (2000) derive that risk averse agents need to liquidate
their portfolio faster in order to reduce the uncertainty of the execution cost. With a different
specification of preferences, Hora (2006) find that the execution schedule that trades rapidly at the
beginning and the end of the execution horizon and slowly in-between is optimal.

As high-frequency data become more and more available to investors, there is a growing interest
to model return predictability in intraday stock returns, often called as “short-term alpha models”,
similar to those well-known factor models in the literature, e.g., Capital Asset Pricing Model
(CAPM), and Fama-French Three Factor Model. For example, Heston et al. (2010) document
that systematic trading as described in the examples above and institutional fund flows lead to
predictable patterns in intraday returns of common stocks. Motivated by this result, we will
consider an optimal execution problem in the presence of short-term predictability with a factor
model.

If the optimal execution problem in this framework satisfies Assumption 1 and Assumption 2,
then we can compute the best execution schedule in the space of linear execution schedules, i.e.,
the number of shares to trade at each time is a linear function of the previous return predicting
factors.

In the next section, we will formulate the optimal execution model as outlined in Example 1.
With this intentional choice, we have the advantage of comparing the performance of the best-linear
policy with the dynamic policy provided in Garleanu and Pedersen (2009)5.

5.1. Formulation

Suppose that x0 denotes the portfolio of N securities we hold in number of shares that we would
like to sell before time T . We assume that trades can occur at discrete times, t = 1, . . . , T . We
define an execution schedule to be a collection u1, . . . , uT , where ut denotes the number of shares
traded at time t. Note that a negative (positive) value of ui,t denotes a sell (buy) trade. Our total
holdings of the security at time t, xt, equal xt = x0 +

∑t
s=1 us due to the linear relationship in the

position and trade vector, i.e., xt = xt−1 + ut.
We follow the discrete time model of Garleanu and Pedersen (2009) closely for the dynamics

of the return and factor realizations. We assume that the price change of the security from t to
5Note that Garleanu and Pedersen (2009) use an infinite-horizon model without any inequality constraints, thus

we will need to solve for the dynamic policy in finite-horizon and project that into the feasible space.
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t + 1, rt+1 is predicted by K factors collected in a vector ft. Furthermore, the evolution of factor
realizations follow a mean reverting process. Formally, we have the following dynamics for price
changes and factor realizations:

rt+1 = Bft + εt+1,

ft+1 = (I − Φ) ft + εt+1,

where B (N ×K) is a constant matrix of factor loadings, Φ (K ×K) is a diagonal matrix of mean
reversion coefficients for the factors. We assume that the noise terms are normally distributed with
the conditional covariance matrices given by Vart(εt+1) = Σ (N ×K) and Vart(εt+1) = Ψ (K×K),
respectively.

The investor would like to find a nonanticipative policy π in the feasible set UF that selects a
sequence of trades u1, . . . , uT in order to maximize expected total profits after transaction costs
and quadratic penalty term of risk:

maximize
π∈UF

{
E
[
T∑
t=1

(
x>t (Bft)−

γ

2x
>
t Σxt −

1
2u
>
t Λut

)]}
(14)

subject to ut = xt − xt−1 (a.s.) t = 1, . . . , T,

ut ≤ 0 (a.s.) t = 1, . . . , T,

xT = 0 (a.s.),

where γ denotes the coefficient of risk aversion. Note that compared to the optimization program
in Example 1, this is only different with the negativity constraints on ut.

5.2. Model calibration

In this section, we will estimate the parameters of the optimal execution problem formulated in
Section 5.1 by using intraday transactions data from the NYSE TAQ database. We will assume
that there is a single stock (N = 1) with two return predicting factors (K = 2) each with a different
mean reversion speed. We chose one of the most liquid stocks, Apple, Inc. (NASDAQ: AAPL), for
our empirical study. We set the execution horizon to be 1 hour and trade intervals to be 5 minutes.
Thus, setting a trade interval to be a one unit of time, our execution period, T , equals 12. We
assume that the trader is risk-neutral, i.e., γ = 0 and the initial position to be liquidated, x0, is
100, 000 shares.

In trade execution problems, the time horizon is typically a day, thus we will construct a factor
model in the same time-frequency. We will use the transaction prices of AAPL on the trading days
of January 4, 2010 (day 0) and January 5, 2010 (day 1) to estimate our factor model. We first divide
each trading day into 78 buckets, i.e., one bucket for each five minutes. For each 5-minute interval,
we calculate the average transaction price from all the transactions happened in that interval. Let
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pd,t be the average price for the tth interval (t = 1, . . . , 78) on day d (d = 0, 1). Let fk,t be the
value of the kth factor value (k = 1,2) for the tth interval (t = 2, . . . , 78). We define our factors as
follows:

f1,t , p2,t − p2,t−1 t = 2, . . . , 78,

f2,t , p2,t − p1,t t = 2, . . . , 78.

Here, we can interpret the factors as the representations of value and momentum signals. Intuitively,
the first factor can be considered as a “momentum” type signal with fast mean reversion and the
second factor as a “value” type signal with slow mean reversion.

Using the price change of the security with rt+1 , p2,t+1 − p2,t, we can compute the estimate
of the factor loading matrix, B, using the following pooled regression,

rt+1 = 0.0726 + 0.3375 f1,t - 0.0720 f2,t + εt+1

(1.96) (3.11) (−2.2)

where the OLS t-statistics are reported in brackets. Thus,

B =
[
0.3375 −0.072

]
.

Similarly, we obtain the mean reversion rates for the factors:

∆f1,t+1 = -0.0353 f1,t + ε1,t+1

∆f2,t+1 = -0.7146 f2,t + ε2,t+1.

Thus,

Φ =
[
0.0353 0

0 0.7146

]
.

We compute the sample variance of the error terms in the returns and factors:

Var(εt) = Σ = 0.0428,

Var(εt) = Ψ =
[
0.0378 0

0 0.0947

]

We set the distribution of the initial factor realization, f0, to the stationary distribution of ft if the
process were to start from f0 = 0. Therefore, f0 is distributed with N (0,Ω0) where Ω0 is defined
as

Ω0 ,
∞∑
t=1

(I − Φ)t Ψ (I − Φ)t =
[
0.0412 0

0 1.3655

]
.
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As assumed in Garleanu and Pedersen (2009), the transaction cost matrix, Λ, is taken to be
proportional to the variance of the returns, Σ. Therefore, we assume that Λ = λΣ where λ =
0.0005.6

Using these parameters, we run a simulation with 50000 trials to estimate each policy’s expected
payoff and standard error. In each trial, we sample f0, solve for the execution schedules of each
approximate method and compute its corresponding payoff.

5.3. Approximate Policies

In this section, we provide four approximate solution techniques to solve the optimal execution
problem in (14) with the calibrated parameters.

• Deterministic policy (DP). Instead of solving for a dynamic policy, we can solve for the
deterministic sequence of trades at the beginning of the trading horizon. For each simulation
trial, we solve a deterministic quadratic program:

maximize
u1,...,uT

{
T∑
t=1

(
x>t (Bδt)−

1
2u
>
t Λut

)}
(15)

subject to ut = xt − xt−1 t = 1, . . . , T,

ut ≤ 0 t = 1, . . . , T,

xT = 0

where δt , E[ft|f0] and equals (I − Φ)tf0.

• Model predictive control (MPC). In this approximation, at each trading time, we solve
for the deterministic sequence of trades and implement only the first trade. Thus, this policy
can be considered as an immediate extension of the deterministic policy with the addition
of resolving at each trading time. Formally, at time t, we solve the following deterministic
quadratic program, DPt:

maximize
ut,...,uT

{
T∑
s=t

x>s

(
B(I − Φ)(s−t)ft

)
− 1

2u
>
s Λus

}
(16)

subject to us = xs − xs−1 s = t, . . . , T,

us ≤ 0 s = t, . . . , T,

xT = 0.

6We obtain a rough estimate of λ as follows. Suppose that you pay the bid-ask spread of the stock, say 1 cent,
for each share traded. Then, for a typical trade of 1000 shares, your total transaction cost is $10. Then, according
to our transaction cost model, we need 1

2λΣ(10002) = 10, which requires λ to equal 0.000467.
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If (u∗t , . . . , u∗T ) is the corresponding optimal solution, then the investor trades u∗t at time t
and solves DPt+1 in the next period.

• Projected dynamic policy (PDP). If the inequality constraints in (14) are relaxed, the
program would reduce to the classical linear quadratic control problem:

maximize
π∈UF

{
E
[
T∑
t=1

(
x>t (Bft)−

1
2u
>
t Λut

)]}
(17)

subject to ut = xt − xt−1 (a.s.) t = 1, . . . , T,

xT = 0 (a.s.).

The optimal dynamic policy for the program in (17) is given by

ut =
(
Λ +At+1

xx

)−1 (
Λxt−1 +

(
B +At+1

xf (I − Φ)
)
ft
)
− xt−1(18)

where the matrices Atxx and Axf are defined in the Appendix. The dynamic rule for ut in
(18) which may not be feasible for the original program in (14). Thus, the projected dynamic
policy seeks a trade decision, ût, which is the projection of ut onto the constraint space of
(14), i.e.,

ût = max {−xt−1,min {0, ut}}

for each time t < T , and sets ûT = −xT−1.

• Best linear policy (BLP). As formulated in Proposition 1, the best linear policy represents
the optimal trade vector with ut = ct +

∑t
s=1Es,tfs for t = 1, . . . , T . Due to the linear

relationship between position and trade vectors, we can represent the position vector in the
similar form, i.e., xt = dt +

∑t
s=1 Js,tfs where dt , x0 +

∑t
i=1 ci and Js,t ,

∑t
i=sEs,i.

We replace the almost-sure constraints with their probabilistic counterparts. Using these
representations, we compute the parameters of the best linear policy by solving the following
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stochastic program:

maximize
ct,Es,t

E

 T∑
t=1

(dt +
t∑

s=1
Js,t

)>
(Bft)−

1
2

(
ct +

t∑
s=1

Es,tfs

)>
Λ
(
ct +

t∑
s=1

Es,tfs

)
(19)

subject to dt = x0 +
t∑
i=1

ci t = 1, . . . , T,

Js,t =
t∑
i=s

Es,i 1 ≤ s ≤ t ≤ T,

P
((

dt +
t∑

s=1
Js,t

)
≤ 0

)
≤ δ t = 1, . . . , T,

P
((

ct +
t∑

s=1
Es,tfs

)
≥ 0

)
≤ δ t = 1, . . . , T,

dT = 0 and Js,T = 0.

Proposition 3. Computing the expectation in the objective function and replacing probabilistic
constraints with deterministic constraints using Fact 1, we obtain the deterministic version
of the stochastic program in (19), a second-order cone program:

maximize
ct,Es,t

T∑
t=1

{
d>t Bδt +

t∑
s=1

(
δ>s (B(I − Φ)t−sJ>s,t)δs + tr

(
B(I − Φ)t−sE>s,tΩs

t

))
(20)

+ 1
2
(
(ct +Mtθt)> Λ (ct +Mtθt) + tr

(
M>t ΛMtΩt

))}

subject to dt = x0 +
t∑
i=1

ci t = 1, . . . , T,

Js,t =
t∑
i=s

Es,i 1 ≤ s ≤ t ≤ T,

(−dt − Ptθt) + Φ−1(1− δ)
∣∣∣∣∣∣∣∣(PtΩtP

>
t

)1/2
∣∣∣∣∣∣∣∣

2
≤ 0 t = 1, . . . , T,

(ct +Mtθt) + Φ−1(1− δ)
∣∣∣∣∣∣∣∣(MtΩtM

>
t

)1/2
∣∣∣∣∣∣∣∣

2
≤ 0 t = 1, . . . , T,

dT = 0 and Js,T = 0.

where Mt and Pt are defined in (8) and (12), δt, θt and Ωt are defined in (24) and (25).
Finally, Ωs

t is the sth diagonal block in Ωt.

Note that the number of decision variables is considerably greater than that of the original
execution problem in (14). Total number of decision variables in a problem with N securities,
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K factors and T periods equals 2NT + 2NK
∑T
t=1

t(t+1)
2 which is on the order of O(NKT 3).

The solution of the deterministic program in (19) provides the desired linear policy, ut =
ct+

∑t
s=1Es,tfs, in the return predicting factors. However, due to the probabilistic constraints,

ut may not be feasible for the original program in (14). Thus, the projected best linear policy
seeks a trade decision, ût, which is the projection of ut onto the constraint space of (14), i.e.,

ût = max {−xt−1,min {0, ut}}

for each time t < T , and sets ûT = −xT−1.

5.4. Upper bounds

In this section, we provide upper bounds for the optimal value of the program in (14).

• Perfect Hindsight (PH). In this upper bound, we compute the optimal with the perfect
knowledge of the factors. For each simulation trial, we sample sequences of f̂1, . . . , f̂T , and
remove all the stochasticity from the model. Then, we solve the following deterministic
quadratic program with linear constraints:

maximize
u1,...,ut

{
T∑
t=1

(
x>t (Bf̂t)−

1
2u
>
t Λut

)}
(21)

subject to ut = xt − xt−1 t = 1, . . . , T,

ut ≤ 0 t = 1, . . . , T,

xT = 0

The solution of this program gives the optimal policy given full knowledge of future factor
realizations for a given simulation path. By computing the average optimal value across all
simulation paths, we obtain an upper bound for the original problem in (14).

• Unprojected dynamic policy (UDP). If the inequality constraints are relaxed in the
original problem in (14), we obtain a linear quadratic control problem which we can solve
exactly:

maximize
π∈UF

{
E
[
T∑
t=1

(
x>t (Bft)−

1
2u
>
t Λut

)]}
(22)

subject to ut = xt − xt−1 (a.s.) t = 1, . . . , T,

xT = 0 (a.s.)

Since this is a relaxed version of the original program in (14), we obtain an upper bound for
the original problem. In this case, we do not need to simulate sequences of factor realizations
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to obtain the value of the upper bound. The value of the dynamic program in (22) equals
−1

2x
>
0 A

0
xxx0 + 1

2

(
tr(Ω0A

0
ff ) +m0

)
where the recursions for Atxx, Atxf and mt are defined in

the appendix.

• Pathwise optimization (PO). Desai et al. (2011) proposes a pathwise optimization tech-
nique that can be applied for this problem as well.

5.5. Numerical results

Using the calibrated parameters from Section 5.2, we run a simulation with 50000 trials to esti-
mate each policy’s average payoff and standard error. In each trial, we sample f0, solve for the
execution schedules of each approximate method and compute its corresponding payoff. In order to
evaluate the performance of each policy effectively, we use the same set of simulation paths in each
policy’s computation of average payoff. We used CVX (see Grant and Boyd (2011)), a package for
solving convex optimization problems, to solve the optimization problems in the computation of
deterministic policy, model predictive control and best linear policy.

Table 1 summarizes the performance of each policy. For each policy, we divide the total payoff
into two categories, alpha gains (

∑T
t=1 x

>
t Bft) and transaction costs (

∑T
t=1−u>t Λut). For both

categories, we report the mean value, (denoted by Avg.) and the associated standard error (denoted
as S.E.). Finally, we report the average computation time (in seconds) per simulation trial for each
policy evaluation.

We observe that the performance gain by the best linear policy is around 7% over the projected
dynamic policy. Model predictive control achieves a closer payoff to that of the projected dynamic
policy whereas deterministic policy achieves a significantly lower payoff compared to other payoffs.
Since the projected dynamic policy has a closed form expression, its computation time is much
smaller than the other policies. The remaining policies have roughly the same order of magnitudes
in computation time with model predictive control having the longest running time.

Best Linear Projected Dynamic Deterministic Model Predictive
Alpha TC Total Alpha TC Total Alpha TC Total Alpha TC Total

Avg. 23.24 -17.11 6.13 25.13 -19.40 5.73 19.34 -15.81 3.53 21.25 -16.54 4.71
S.E. 0.233 0.025 0.224 0.227 0.039 0.229 0.229 0.025 0.224 0.231 0.024 0.224
Time 5.40 0.0001 1.01 8.09

Table 1: Summary of the performance statistics of each policy. For each approximate policy, we divide
the total payoff into two categories, alpha gains and transaction costs. For both categories, we report the
mean value, (denoted by Avg.) and the associated standard error (denoted as S.E.) which are reported
in thousands of dollars. Finally, we report the average computation time (in seconds) per simulation
trial for each policy evaluation. We observe that the best linear policy achieves a higher payoff than
projected dynamic policy and model predictive control.

Despite the higher average payoff, relatively high standard errors impedes the immediate con-
clusion that best linear achieves a statistically significant higher payoff. Thus, in order to compare
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the performances of the best linear policy and projected dynamic policy in detail, for each simula-
tion trial, we compute the differences in alpha gains and transaction costs between these policies.
Table 2 illustrates that best linear policy performs statistically better than the projected dynamic
policy. We observe that the standard error for the difference in total profits is much smaller than
the reported standard errors of the total profits in Table 1. In conclusion, this results emphasizes
further that the performance gain with using the best linear policy is statistically significant.

BLP-PDP
Alpha TC Total

Avg. -1.89 2.29 0.40
S.E. 0.0137 0.0196 0.0095

Table 2: The detailed comparison between the alpha gains and transaction costs of the best linear policy
and projected dynamic policy. We observe that the standard error for the difference in total profits is
very small, thus, the performance gain by employing the best linear policy is statistically significant.

Finally, Table 3 summarizes the performance statistics for each upper bound policy. We observe
that perfect hindsight and pathwise optimization provide much tighter bounds than the unprojected
dynamic policy with pathwise optimization yielding the tightest bound. Comparing the tightest
bound to the performance of the best linear policy, we conclude that the optimality gap by employ-
ing the best linear policy is fairly small, at most 5% of the optimal value of the original program
in (14), which indicates that the best linear policy is nearly optimal.

Perfect Hindsight Unprojected Dynamic Pathwise Optimization
Alpha TC Total Total Total

Avg. 26.28 -17.70 8.57 12.58 6.46
S.E. 0.231 0.0271 0.223 0.00 0.04
Time 0.87 0.0001 N/A

Table 3: Summary of the performance statistics for each upper bound policy. We observe that pathwise
optimization provides the tightest bound which is very close to the payoff of the best linear policy. This
indicates that the best linear policy is nearly optimal.

6. Conclusion

This paper provides a highly tractable rebalancing rule for dynamic portfolio choice problems with
return predictability and transaction costs. Our rebalancing rule is a linear function of return
predicting factors and can be utilized in a wide spectrum of portfolio choice models with realistic
considerations for risk measures, transaction costs and constraints. As long as the starting dy-
namic portfolio optimization problem is a convex programming problem, the modified optimization
problem seeking the optimal parameters of the linear decision rule will be a convex programming
problem.
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We provide a large class of dynamic portfolio choice models that differ in their modeling of
risk measures, transaction costs and constraints which can be formulated as deterministic convex
optimization problems. Specifically, we compute the analytic expression of the objective function
in the cases with quadratic utility function on the terminal wealth or proportional and nonlinear
transaction cost functions. Finally we derive efficient formulations for incorporating linear equality
and inequality constraints. If there does not exist an analytic expression for the objective, the
optimal parameters can be solved via the sampling techniques available from the sample average
and stochastic approximation literature.

Finally, we implement the computation of the best linear policy in the context of portfolio
execution, the execution of a large long position in a single security. For this purpose, we need
positivity constraints on portfolio positions and the amount of shares sold in each period in order
to achieve a feasible execution. In order to compare the performance of the best linear rebalancing
rule, we use the identical discrete-time setup of Garleanu and Pedersen (2009) for which a closed-
form solution is available in the lack of constraints. We calibrate the model parameters using
two-days of transactions data on a liquid stock and construct two predictors in a high-frequency
setting with different mean reversion speeds. The simulation implemented with these predictors
and calibrated parameters reveal that the best linear policy performs better than the deterministic
policy, model predictive control and a projected version of the optimal policy proposed by Garleanu
and Pedersen (2009).
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A. Proofs

Proof of Proposition 2 Since xt = dt +
∑t
s=1 Js,tfs,

E[WT ] =
T∑
t=1

(
κtµt + E

[
d>t Bft +

t∑
s=1

f>s J
>
s,tBft

])

=
T∑
t=1

(
κtµt + d>t Bδt +

t∑
s=1

E
[
f>s J

>
s,tBE [ft|fs]

])

=
T∑
t=1

(
κtµt + d>t Bδt +

t∑
s=1

E
[
f>s J

>
s,tB(I − Φ)t−sfs

])

=
T∑
t=1

(
κtµt + d>t Bδt +

t∑
s=1

(
δ>s (B(I − Φ)t−sJ>s,t)δs + tr

(
B(I − Φ)t−sJ>s,tΩs

t

)))
,

where the mean vector of xt, κt, is defined in (11). For the transaction cost terms, we use the
representation, ut = dt +MtFt, and then,

E[CT ] = 1
2

T∑
t=1

E
[
u>t Λut

]
= 1

2

T∑
t=1

E
[
(ct +MtFt)> Λ (ct +MtFt)

]

= 1
2

T∑
t=1

(ct +Mtθt)> Λ (ct +Mtθt) + tr
(
ΛMtΩtM

>
t

)

= 1
2

T∑
t=1

(ct +Mtθt)> Λ (ct +Mtθt) +
∣∣∣∣∣∣∣∣(Λ

1
2MtΩ

1
2
t

)∣∣∣∣∣∣∣∣2
F
.

For the penalty term

E[W 2
T ] =

T∑
t=1

T∑
k=1

E
[
(x>t rt+1)(x>k rk+1)

]

=
T∑
t=1

E
[
x>t εt+1ε

>
t+1xt

]
+

T∑
t=1

T∑
k=1

E
[
x>t Bftf

>
k B

>xk
]

=
T∑
t=1

E
[
x>t εt+1ε

>
t+1xt + x>t Bftf

>
t B

>xt
]

+ 2
T∑
t=1

t∑
k=1

E
[
x>t Bftf

>
k B

>xk
]

First, note

E
[
x>t εt+1ε

>
t+1xt

]
= E

[
x>t E

[
εt+1ε

>
t+1|Ft

]
xt
]

= E
[
x>t Σxt

]
= (dt + Ptθt)>Σ (dt + Ptθt) + tr

(
ΣPtΩtP

>
t

)
.
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Finally,

E
[
x>t Bftf

>
t B

>xt
]

= E

(dt +
t∑

s=1
Js,tfs

)>
Bftf

>
t B

>
(
dt +

t∑
s=1

Js,tfs

)
= E

{(
dt +

t−1∑
s=1

Js,tfs + Jt,t ((I − Φ)ft−1 + εt)
)>

B ((I − Φ)ft−1 + εt) ((I − Φ)ft−1 + εt)>B>(
dt +

t−1∑
s=1

Js,tfs + Jt,t ((I − Φ)ft−1 + εt)
)}

= E

(dt +
t−1∑
s=1

Js,tfs + Jt,t(I − Φ)ft−1

)>
B(I − Φ)ft−1 (B(I − Φ)ft−1)>

(
dt +

t−1∑
s=1

Js,tfs + Jt,t(I − Φ)ft−1

)
+ E

(dt +
t−1∑
s=1

Js,tfs + Jt,t(I − Φ)ft−1

)>
εtε
>
t

(
dt +

t−1∑
s=1

Js,tfs + Jt,t(I − Φ)ft−1

)
+ E

[
ε>t B(I − Φ)ft−1 (B(I − Φ)ft−1)> εt

]
+ E

[
ε>t εtε

>
t εt
]

= E

(dt +
t−1∑
s=1

Js,tfs + Jt,t(I − Φ)ft−1

)>
B(I − Φ)ft−1 (B(I − Φ)ft−1)>

(
dt +

t−1∑
s=1

Js,tfs + Jt,t(I − Φ)ft−1

)
+
(
dt + P̄t−1θt−1

)>
Ψ
(
dt + P̄t−1θt−1

)
+ tr

(
P̄t−1Ωt−1P̄

>
t−1

)
tr
(
B(I − Φ)Ωt−1

t (B(I − Φ))>Ψ
)

+ ψ2

where in the last step we use iterated expectations by conditioning on the information up to t− 1,
Ft−1, and we define

(23) P̄t−i ,
[
J1,t J2,t . . . Jt−i−1,t J̄t−i,t

]
,

with

J̄t−i,t ,

(
i∑

k=0
Jt−k,t(I − Φ)i−k

)
,

and

ψ2 ,
K∑
i=1

3Ψii + 2
K∑
i=1

i∑
j=1

Ψij ,

where Ψij is the (i, j)th entry of the covariance matrix of the error terms for factor dynamics, Ψ.
Thus, by conditioning recursively, we obtain,

E
[
x>t Bftf

>
t B

>xt
]

=
(
dt +

t∑
s=1

Js,t(I − Φ)sf0

)>
B(I − Φ)tf0

(
B(I − Φ)tf0

)>(
dt +

t∑
s=1

Js,t(I − Φ)sf0

)

+
t∑
i=1

((
dt + P̄t−iθt−i

)>
Ψ
(
dt + P̄t−iθt−i

)
+ tr

(
P̄t−iΩt−iP̄

>
t−i

)
tr
(
B(I − Φ)iΩt−i

t

(
B(I − Φ)i

)>
Ψ
)

+ ψ2
)
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The last term, E
[
x>t Bftf

>
k B

>xk
]
, can also be computed similarly.

Derivation of the Projected and Unprojected Dynamic Policies Using dynamic program-
ming principle and ut = (xt − xt−1), the value function Vt(xt−1, ft) satisfies

Vt−1(xt−1, ft) = maximize
xt

(
x>t (Bft)−

1
2(xt − xt−1)>Λ(xt − xt−1) + E[Vt(xt, ft+1)]

)
.

We guess the following quadratic form for our value function:

Vt(xt, ft+1) = −1
2x
>
t A

t
xxxt + x>t A

t
xfft+1 + 1

2f
>
t+1A

t
ffft+1 + 1

2mt.

Then,

E[Vt(xt, ft+1)] = −1
2x
>
t A

t
xxxt+x>t Atxf (I − Φ) ft+

1
2f
>
t (I − Φ)Atff (I − Φ) ft+

1
2
(
tr(ΨAtff ) +mt

)
.

At the the last period, we need xT = 0, and our value function equals

VT−1(xT−1, ft) = −1
2x
>
T−1ΛxT−1

which satisfies our functional form with

AT−1
xx = Λ AT−1

xf = zero(N,K) AT−1
ff = zero(K,K) mT−1 = 0

where zero(m,n) denotes a matrix of size (m× n) with each entry equaling zero.
For all t < T − 1, we maximize the quadratic objective −1

2x
>
t Qtxt + x>t qt + bt where

Qt = Λ +Atxx

qt = Λxt−1 +
(
B +Atxf (I − Φ)

)
ft

bt = −1
2x
>
t−1Λxt−1 + 1

2f
>
t (I − Φ)Atff (I − Φ) ft + tr(ΨAtff ) +mt

Then, the optimal xt is given by Q−1
t qt and xt and ut are given by

xt =
(
Λ +Atxx

)−1 (
Λxt−1 +

(
B +Atxf (I − Φ)

)
ft
)

ut =
(
Λ +Atxx

)−1 (
Λxt−1 +

(
B +Atxf (I − Φ)

)
ft
)
− xt−1
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The maximum then occurs at 1
2q
>
t Q
−1
t qt + bt and we obtain the following recursions:

At−1
xx = −Λ

(
Λ +Atxx

)−1
Λ + Λ

At−1
xf = Λ

(
Λ +Atxx

)−1 (
B +At−1

xf (I − Φ)
)

At−1
ff =

(
B +Atxf (I − Φ)

)> (
Λ +At−1

xx

)−1 (
B +Atxf (I − Φ)

)
+ (I − Φ)Atff (I − Φ)

mt−1 = tr(ΨAtff ) +mt

Using these recursions, we can compute the optimal expected payoff of the dynamic program.
Using f0 = N(0,Ω),

E[V0(x0, f1)] = E [E[V0(x0, f1)|f0]]

= E
[
−1

2x
>
0 A

0
xxx0 + x>0 A

0
xf (I − Φ) f0 + 1

2f
>
0 (I − Φ)A0

ff (I − Φ) f0 + 1
2
(
tr(ΩA0

ff ) +m0
)]

= −1
2x
>
0 A

0
xxx0 + 1

2
(
tr(ΩA0

ff (I − Φ)) + tr(ΨA0
ff ) +m0

)
.

Proof of Proposition 3 We first compute the objective function. For each t, we have to compute
the expectation of the following two terms, E

[
x>t (Bft)

]
, and E

[
u>t Λut

]
. First, we derive the

statistics for ft, ut and xt. We first note that

ft = (I − Φ)tf0 +
t∑

s=1
(I − Φ)t−sεs.

Letting Ft , (f1, . . . , ft)>, Then, in vector form, we have the following representation

Ft =



(I − Φ)f0

(I − Φ)2f0
...

(I − Φ)t−1f0

(I − Φ)tf0


+



I 0 . . . 0 0
(I − Φ) I 0 . . . 0

... (I − Φ) . . . . . . 0

(I − Φ)t−1 . . .
. . . I 0

(I − Φ)t . . . (I − Φ) I


︸ ︷︷ ︸

,At



ε1

ε2
...

εt−1

εt


.
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Using this representation, we compute the mean

(24) θt , E[Ft] =



δ1

δ2
...

δt−1

δt


,



(I − Φ)f0

(I − Φ)2f0
...

(I − Φ)t−1f0

(I − Φ)tf0,


and the covariance matrix

(25) Ωt , Var[Ft] = At



Ψ 0 . . . 0 0
0 Ψ . . . 0
... . . . . . . 0

. . . Ψ 0
0 . . . 0 Ψ


A>t .

Note that Ωt is a block diagonal matrix with t blocks of size K ×K. Recall that in Section 4, we
defined

(26) Mt ,
[
E1,t E2,t . . . Et,t

]
Then, ut = ct +MtFt and we have the following moments for ut:

µt , E(ut) = ct +Mtθt(27)

Vt , Var(ut) = MtΩtM
>
t .

Therefore, ut is normally distributed with mean µt and covariance matrix Vt. Similarly, we can
obtain the statistics for xt. Using (11),

κt , E(xt) = dt + Ptθt

Yt , Var(xt) = PtΩtP
>
t .

We note the following fact from multivariate statistics.

Fact 2. If z is a random vector with mean µ and variance Σ, and Q is positive definite matrix,
then

E(z′Qz) = tr(QΣ) + µ′Qµ

= ‖Q
1
2 Σ

1
2 ‖2F + µ′Qµ

where ‖.‖F denotes the Frobenius norm.
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We can now compute each term in the objective function.

E
[
x>t (Bft)

]
= E

[
d>t Bft +

t∑
s=1

f>s J
>
s,tBft

]

= d>t Bδt +
t∑

s=1
E
[
f>s J

>
s,tBE [ft|fs]

]

= d>t Bδt +
t∑

s=1
E
[
f>s J

>
s,tB(I − Φ)t−sfs

]

= d>t Bδt +
t∑

s=1

(
δ>s (B(I − Φ)t−sJ>s,t)δs + tr

(
B(I − Φ)t−sJ>s,tΩs

t

))
where Ωs

t is the sth diagonal block in Ωt. Finally, for the transaction cost terms,

E
[
u>t Λut

]
= E

[
(ct +MtFt)> Λ (ct +MtFt)

]
= (ct +Mtθt)> Λ (ct +Mtθt) + tr

(
ΛMtΩtM

>
t

)
= (ct +Mtθt)> Λ (ct +Mtθt) +

∣∣∣∣∣∣∣∣(Λ
1
2MtΩ

1
2
t

)∣∣∣∣∣∣∣∣2
F

Summing up all the terms, our final objective becomes

maximize
ct,Es,t

T∑
t=1

{
d>t Bδt +

t∑
s=1

(
δ>s (B(I − Φ)t−sJ>s,t)δs + tr

(
B(I − Φ)t−sE>s,tΩs

t

))
+ 1

2

(
(ct +Mtθt)> Λ (ct +Mtθt) +

∣∣∣∣∣∣∣∣(Λ
1
2MtΩ

1
2
t

)∣∣∣∣∣∣∣∣2
F

)}
In order to enforce xT = 0, we need

dT = 0

J>s,T,k = 0 ∀s = 1, . . . T

where Js,T,k is the kth row of Js,T .
For the probabilistic constraints, we use Fact 1. Note that P (xt ≤ 0) ≤ δ can be writen as

P (−xt ≥ 0) ≤ δ which equals by Fact 1,

(−dt − Ptθt) + Φ−1(1− δ)
∣∣∣∣∣∣∣∣(PtΩtP

>
t

)1/2
∣∣∣∣∣∣∣∣

2
≤ 0.

Similarly, we obtain that P (ut ≥ 0) ≤ δ can be writen as

(ct +Mtθt) + Φ−1(1− δ)
∣∣∣∣∣∣∣∣(MtΩtM

>
t

)1/2
∣∣∣∣∣∣∣∣

2
≤ 0.
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