## Risk Quadrangle and Applications in Day-Trading of Equity Indices

## Stan Uryasev

Risk Management and Financial Engineering Lab University of Florida and American Optimal Decisions

## Agenda

- Introductory words about activities
- Bubbles: Positive and Negative issues
- Fundamental quadrangle working paper of Rockafellar and Uryasev www.ise.ufl.edu/uryasev/quadrangle\_WP\_101111.pdf
  - CVaR optimization
  - Percentile regression
  - Examples of quadrangles
- Library of test problems link: <u>http://www.ise.ufl.edu/uryasev/testproblems/</u>
- Hedging strategies for equities

link: <a href="http://www.aorda.com/aod/static/documents/Protecting\_Equity\_Investments.pdf">www.aorda.com/aod/static/documents/Protecting\_Equity\_Investments.pdf</a>

## **Introductory Words about Activities**

- University of Florida webpage: <u>www.ise.ufl.edu/uryasev/</u>
  - Publications
  - Library of Test Problems with data, codes, and solutions
- American Optimal Decisions website
  - www.aorda.com/aod/
- American Optimal Advisors website
  - www.aorda.com/aoa/

## **Housing Bubble: Positive Aspects**

- About 20% of USA GDP is coming from financial industry
  - Credit derivatives and other derivatives were accounting up to 40% of bank profits prior to 2008 (i.e., about 8% of USA GDP was related to derivatives trading)
- Transfer recourses and generation of wealth
  - Beautiful houses and commercial buildings in France, USA,...
- Leveraging (money borrowing): high return on investment
  - Mortgage (root is death, i.e., you pay/leveraged until you are dead)
  - High return on investment of banks and high salaries and taxes
- Top financial engineering approaches
  - CDO (Collateralized Debt Obligations), CLO, ...
  - Top mathematics, engineering, databases, management, ...

### Fundamental Risk Quadrangle

risk  $\mathcal{R} \leftrightarrow \mathcal{D}$  deviationoptimization $\uparrow \quad \mathcal{S} \quad \uparrow$ estimationregret  $\mathcal{V} \leftrightarrow \mathcal{E}$  error

 $\mathcal{R}(X)$  provides a numerical surrogate for the overall hazard in X,  $\mathcal{D}(X)$  measures the "nonconstancy" in X as its uncertainty,  $\mathcal{E}(X)$  measures the "nonzeroness" in X,  $\mathcal{V}(X)$  measures the "regret" in facing the mix of outcomes of X,  $\mathcal{S}(X)$  is the "statistic" associated with X through  $\mathcal{E}$  or equivalently  $\mathcal{V}$ . **Risk versus deviation:** 

 $\mathcal{D}(X) = \mathcal{R}(X - EX), \qquad \mathcal{R}(X) = EX + \mathcal{D}(X)$ 

Deviation from error:

$$\mathcal{D}(X) = \min_{C} \{ \mathcal{E}(X - C) \}$$

**Risk from regret:** 

$$\mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}$$

Error versus regret:

 $\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \quad \mathcal{V}(X) = EX + \mathcal{E}(X)$ 

Statistic equivalently from error or regret:

 $\begin{aligned} \mathcal{S}(X) &= \operatorname{argmin}_{C} \big\{ \mathcal{E}(X - C) \big\}, \\ \mathcal{S}(X) &= \operatorname{argmin}_{C} \big\{ C + \mathcal{V}(X - C) \big\} \end{aligned}$ 

Mean-Based (St.Dev. Version) Quadrangle  $\mathcal{S}(X) = EX = \mu(X) = \text{mean}$  $\mathcal{R}(X) = EX + \lambda \sigma(X) = \text{safety margin tail risk}$  $\mathcal{D}(X) = \lambda \sigma(X) = \text{standard deviation, scaled}$  $\mathcal{V}(X) = EX + \lambda ||X||_2 = L^2$ -regret, scaled  $\mathcal{E}(X) = \lambda ||X||_2 = L^2$ -error, scaled

 $\mathcal{D}(X) = \mathcal{R}(X) - EX, \qquad \mathcal{R}(X) = EX + \mathcal{D}(X)$  $\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \mathcal{V}(X) = EX + \mathcal{E}(X)$  $\mathcal{D}(X) = \min_{C} \{ \mathcal{E}(X - C) \}, \qquad \mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}$  $\mathcal{S}(X) = \underset{C}{\operatorname{argmin}} \{ \mathcal{E}(X - C) \} = \underset{C}{\operatorname{argmin}} \{ C + \mathcal{V}(X - C) \}$ 

1

General Relationsh

$$\begin{split} \mathcal{S}(X) &= EX = \mu(X) \\ \mathcal{R}(X) &= EX + \lambda \, \sigma^2(X) \\ \mathcal{D}(X) &= \lambda \, \sigma^2(X) \\ \mathcal{V}(X) &= EX + \lambda ||X||_2^2 = E[v(X)] \quad \text{for } v(x) = x + \lambda x^2 \\ \mathcal{E}(X) &= \lambda ||X||_2^2 = E[e(x)] \quad \text{for } e(x) = \lambda x^2 \end{split}$$

**General Relationships** 

-----

$$\mathcal{D}(X) = \mathcal{R}(X) - EX, \qquad \mathcal{R}(X) = EX + \mathcal{D}(X)$$
$$\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \mathcal{V}(X) = EX + \mathcal{E}(X)$$
$$\mathcal{D}(X) = \min_{C} \{ \mathcal{E}(X - C) \}, \qquad \mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}$$
$$\mathcal{S}(X) = \underset{C}{\operatorname{argmin}} \{ \mathcal{E}(X - C) \} = \underset{C}{\operatorname{argmin}} \{ C + \mathcal{V}(X - C) \}$$

### VaR and CVaR



\_ \_ \_ \_

### **Quantile-Based** Quadrangle

$$\begin{split} \mathcal{S}(X) &= \mathrm{VaR}_{\alpha}(X) = q_{\alpha}(X) = \mathrm{quantile} \\ \mathcal{R}(X) &= \mathrm{CVaR}_{\alpha}(X) = \overline{q}_{\alpha}(X) = \mathrm{superquantile} \\ \mathcal{D}(X) &= \mathrm{CVaR}_{\alpha}(X - EX) = \overline{q}_{\alpha}(X - EX) = \mathrm{superquantile} \\ \mathcal{V}(X) &= \frac{1}{1-\alpha}EX_{+} = \mathrm{a \ penalty \ expression \ for \ regret \ as \ scaled \ average \ loss} \\ \mathcal{E}(X) &= E[\frac{\alpha}{1-\alpha}X_{+} + X_{-}] = \mathrm{normalized \ Koenker-Bassett \ error} \end{split}$$

$$\mathcal{D}(X) = \mathcal{R}(X) - EX, \qquad \mathcal{R}(X) = EX + \mathcal{D}(X)$$
  
General Relationships  
$$\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \mathcal{V}(X) = EX + \mathcal{E}(X)$$
  
$$\mathcal{D}(X) = \min_{C} \{ \mathcal{E}(X - C) \}, \qquad \mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}$$
  
$$\mathcal{S}(X) = \underset{C}{\operatorname{argmin}} \{ \mathcal{E}(X - C) \} = \underset{C}{\operatorname{argmin}} \{ C + \mathcal{V}(X - C) \}$$

## VaR vs CVaR in optimization

- VaR is difficult to optimize numerically when losses are not normally distributed
- PSG package allows VaR optimization
- In optimization modeling, CVaR is superior to VaR:
  - For elliptical distribution minimizing VaR, CVaR or Variance is equivalent
  - CVaR can be expressed as a minimization formula (Rockafellar and Uryasev, 2000)
  - CVaR preserve convexity

**CVaR OPTIMIZATION: MATHEMATICAL BACKGROUND** 

We want to minimize  $CVaR_{\alpha}(f(x,Y))$ Definition

$$F(x, \zeta) = \zeta + (1 - \alpha)^{-1} E(f(x, Y) - \zeta)^{+}$$
  
=  $\zeta + v \sum_{j=1,j} (f(x, y^{j}) - \zeta)^{+}$ , in case of equally probable scenarios  
 $v = ((1 - \alpha)f)^{-1} = \text{const}$ 

#### Proposition 1.

 $CVaR_{\alpha}(\mathbf{x}) = \min_{\zeta \in \mathbb{R}} F(\mathbf{x}, \zeta)$  and VaR denoted by  $\zeta_{\alpha}(\mathbf{x})$  is a smallest minimizer

#### Proposition 2.

$$\min_{\mathbf{x}\in\mathbf{X}} CVaR_{\alpha}(f(\mathbf{x},\mathbf{Y})) = \min_{\zeta\in\mathbf{R},\mathbf{x}\in\mathbf{X}} F(\mathbf{x},\zeta) \tag{1}$$

- <u>Minimizing of  $F(x, \zeta)$  simultaneously calculates  $VaR = \zeta_{\underline{\alpha}}(x)$ , optimal decision x, and optimal CVaR of f(x, Y)</u>
- Problem (1) can be reduces to LP using additional variables

• CVaR minimization

 $\min_{\{x \in X\}} CVaR$ 

can be reduced to the following linear programming (LP) problem

$$\min_{\{x \in X, \zeta \in R, z \in R^{J}\}} \zeta + \nu \sum_{\{j=1,\dots,J\}} z_{j}$$

subject to

 $z_j \ge f(x,y^{j}) - \zeta, \quad z_j \ge 0, \quad j = 1,...J \quad (v = ((1 - \alpha)J)^{-1} = \text{const})$ 

 By solving LP we find an optimal x\*, corresponding VaR, which equals to the lowest optimal ζ\*, and minimal CVaR, which equals to the optimal value of the linear performance function Deterministic setting

minimize  $f_0(x)$  over all  $x \in S \subset \mathbb{R}^n$  subject to  $f_i(x) \leq 0$  for  $i = 1, \ldots, m$ .

Random values depending on decisions variables

$$X_0(x) = f_0(x), \ X_1(x) = f_1(x), \dots, \ X_m(x) = f_m(x)$$

Stochastic Optimization Problem

$$(\underline{\mathcal{P}}) \qquad \text{minimize } \overline{f}_0(x) = \mathcal{R}_0(\underline{f}_0(x)) \text{ over } x \in S \text{ subject to } \overline{f}_i(x) = \mathcal{R}_i(\underline{f}_i(x)) \leq 0,$$
$$i = 1, \dots, m.$$

### Using Quadrangle in Optimization

**Regret Theorem.** Consider a stochastic optimization problem ( $\underline{\mathcal{P}}$ ) in which each  $\mathcal{R}_i$  is a regular measure of risk coming from a regular measure of regret  $\mathcal{V}_i$  with associated statistic  $\mathcal{S}_i$  by the quadrangle formulas

$$\mathcal{R}_i(X) = \min_C \left\{ C + \mathcal{V}_i(X - C) \right\}, \qquad \mathcal{S}_i(X) = \underset{C}{\operatorname{argmin}} \left\{ C + \mathcal{V}_i(X - C) \right\}.$$
(5.4)

\_\_\_\_\_

Solving  $(\underline{\mathcal{P}})$  can be cast then as solving the expanded problem

(
$$\underline{\mathcal{P}}'$$
) choose  $x = (x_1, \dots, x_n)$  and  $C_0, C_1, \dots, C_m$  to  
minimize  $C_0 + \mathcal{V}_0(\underline{f}_0(x) - C_0)$  over  $x \in S, C_i \in \mathbb{R}$ ,  
subject to  $C_i + \mathcal{V}_i(\underline{f}_i(x) - C_i) \leq 0$  for  $i = 1, \dots, m$ 

An optimal solution  $(\bar{x}, \bar{C}_0, \bar{C}_1, \dots, \bar{C}_m)$  to problem  $(\underline{\mathcal{P}}')$  provides as  $\bar{x}$  an optimal solution to problem  $(\underline{\mathcal{P}})$  and as  $\bar{C}_i$  a corresponding value of the statistic  $\mathcal{S}_i(\underline{f}_i(\bar{x}))$  for  $i = 0, 1, \dots, m$ .

#### Factor Models: Percentile Regression

factors  $X_1, ..., X_q$  from various sources of information failure load Y

 $Y = c_0 + c_1 X_1 +, ..., + c_q X_q + \varepsilon$ , where  $\varepsilon$  is an *error* term



Percentile regression (Koenker and Basset (1978)) CVaR regression (Rockafellar, Uryasev, Zabarankin (2003))

#### **Percentile Error Function and CVaR Deviation**

# Statistical approach based on asymmetric percentile error functions: $E[(1-\alpha)(-\varepsilon^{-})+\alpha\varepsilon^{+}]$ is called <u>Percentile Regression</u>

- $\varepsilon^+$  = positive part of error
- $\varepsilon^{-}$  = negative part of error



### Error, Deviation, Statistic

For the error Koenker and Basset error measure =:
 the corresponding deviation measure < is CVaR deviation</li>

 $D(X) = \min_{c} \ \mathcal{E}(X - C)$ 

the corresponding statistic  ${\rm K}$  is percentile or VaR

 $S(X) = \operatorname*{argmin}_{C} \mathcal{E}(X - C)$ 

- Percentile regression estimates percentile or VaR which is the statistic for the Quantile-based Quadrangle
- Similar results are valid for other quadrangles

General regression problem

$$\min_{c_0,c_1,\dots,c_n} \mathcal{E}(Y - [c_0 + c_1 X_1 + \dots + c_n X_n])$$

is equivalent to

$$\min_{c_1,\dots,c_n} D\left(Y - [c_1X_1 + \dots + c_nX_n]\right)$$
  
s.t.  $c_0 \in S(Y - [c_1X_1 + \dots + c_nX_n])$ 

### **General Regression Theorem**

#### Regression problem

 $f(x_1, \dots, x_n) = C_0 + C_1 x_1 + \dots + C_n x_n$ minimize  $\mathcal{E}(Z_f)$  over all  $f \in \mathcal{C}$ , where  $Z_f = Y - f(X_1, \dots, X_n)$ , (5.6)

**Regression Theorem.** Consider problem (5.6) for random variables  $X_1, \ldots, X_n$  and Y in the case of  $\mathcal{E}$  being a regular measure of error and  $\mathcal{C}$  being a class of functions  $f : \mathbb{R}^n \to \mathbb{R}$  such that

 $f \in \mathcal{C} \implies f + C \in \mathcal{C} \text{ for all } C \in \mathbb{R}.$  (5.8)

Let  $\mathcal{D}$  and  $\mathcal{S}$  correspond to  $\mathcal{E}$  as in the Quadrangle Theorem. Problem (5.6) is equivalent then to the following:

minimize 
$$\mathcal{D}(Z_f)$$
 over all  $f \in \mathcal{C}$  such that  $0 \in \mathcal{S}(Z_f)$ . (5.9)

Moreover if  $\mathcal{E}$  is of expectation type and  $\mathcal{C}$  includes a function f satisfying

$$f(x_1, \dots, x_n) \in \mathcal{S}(Y(x_1, \dots, x_n)) \text{ almost surely for } x_1, \dots, x_n) \in D,$$
  
where  $Y(x_1, \dots, x_n) = Y_{X_1 = x_1, \dots, X_n = x_n}$  (conditional distribution), (5.10)

with D being the support of the distribution in  $\mathbb{R}^n$  induced by  $X_1, \ldots, X_n$ , then that f solves the regression problem and tracks this conditional statistic in the sense that

$$f(X_1, \dots, X_n) = \mathcal{S}(Y \mid X_1, \dots, X_n) \text{ almost surely.}$$
(5.11)

### Median-Based Quadrangle

$$\begin{aligned} \mathcal{S}(X) &= \operatorname{VaR}_{1/2}(X) = q_{1/2}(X) \\ &= \operatorname{median} \end{aligned}$$

 $\mathcal{R}(X) = \mathrm{CVaR}_{1/2}(X) = Q_{1/2}(X)$ = "supermedian" (average in tail above median)  $\mathcal{D}(X) = \text{CVaR}_{1/2}(X - EX) = Q_{1/2}(X - EX)$ = supermedian deviation  $\mathcal{E}(X) = E|X|$  $= \mathcal{L}^1$ -error  $\mathcal{V}(X) = 2E[X_+]$  $= \mathcal{L}^1$ -regret  $\mathcal{D}(X) = \mathcal{R}(X) - EX, \qquad \mathcal{R}(X) = EX + \mathcal{D}(X)$  $\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \mathcal{V}(X) = EX + \mathcal{E}(X)$  $\mathcal{D}(X) = \min_{C} \{ \mathcal{E}(X - C) \}, \qquad \mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}$ General Relationships  $\mathcal{S}(X) = \operatorname*{argmin}_{C} \{ \mathcal{E}(X - C) \} = \operatorname*{argmin}_{C} \{ C + \mathcal{V}(X - C) \}$ 

$$\mathcal{S}(X) = \frac{1}{2}[\sup X + \inf X] = \text{center of range of } X \text{ (if bounded)}$$
  

$$\mathcal{R}(X) = EX + \frac{1}{2}[\sup X - \inf X] = \text{range-buffered risk}$$
  

$$\mathcal{D}(X) = \frac{1}{2}[\sup X - \inf X] = \text{radius of the range of } X \text{ (maybe } \infty)$$
  

$$\mathcal{V}(X) = EX + \sup |X| = \mathcal{L}^{\infty}\text{-regret}$$
  

$$\mathcal{E}(X) = \sup |X| = \mathcal{L}^{\infty}\text{-error}$$

$$\mathcal{D}(X) = \mathcal{R}(X) - EX, \qquad \mathcal{R}(X) = EX + \mathcal{D}(X)$$
  
General Relationships  $\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \mathcal{V}(X) = EX + \mathcal{E}(X)$   
 $\mathcal{D}(X) = \min_{C} \{ \mathcal{E}(X - C) \}, \qquad \mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}$   
 $\mathcal{S}(X) = \operatorname*{argmin}_{C} \{ \mathcal{E}(X - C) \} = \operatorname*{argmin}_{C} \{ C + \mathcal{V}(X - C) \}$ 

$$\begin{aligned} \mathcal{S}(X) &= \sup X = \text{top of the range of } X \text{ (maybe } \infty) \\ \mathcal{R}(X) &= \sup X = \text{yes, the same as } \mathcal{S}(X) \\ \mathcal{D}(X) &= \sup X - EX = \text{span of the upper range of } X \text{ (maybe } \infty) \\ \mathcal{V}(X) &= \begin{cases} 0 & \text{if } X \leq 0 \\ \infty & \text{if } X \nleq 0 \end{cases} = \text{worst-case-regret} \\ \mathcal{E}(X) &= \begin{cases} E|X| & \text{if } X \leq 0 \\ \infty & \text{if } X \nleq 0 \end{cases} = \text{worst-case-error} \\ \mathcal{D}(X) = \mathcal{R}(X) - EX, \quad \mathcal{R}(X) = EX + \mathcal{D}(X) \end{aligned}$$

**General Relationships** 

$$\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \mathcal{V}(X) = EX + \mathcal{E}(X)$$
$$\mathcal{D}(X) = \min_{C} \{ \mathcal{E}(X - C) \}, \qquad \mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}$$
$$\mathcal{S}(X) = \underset{C}{\operatorname{argmin}} \{ \mathcal{E}(X - C) \} = \underset{C}{\operatorname{argmin}} \{ C + \mathcal{V}(X - C) \}$$

#### Distributed-Worst-Case-Based Quadrangle

 $p_k = \text{ probability of the } k\text{th set of circumstances, with } p_k > 0, p_1 + \dots + p_r = 1,$  $\sup_k X = \text{ worst of } X \text{ under circumstances } k, \text{ for } k = 1, \dots, r,$  $E_k X = \text{ conditional expectation of } X \text{ under circumstances } k.$ 

$$S(X) = p_1 \sup_1 X + \dots + p_r \sup_r X$$
  

$$\mathcal{R}(X) = p_1 \sup_1 X + \dots + p_r \sup_r X = \text{yes, the same as } S(X)$$
  

$$\mathcal{D}(X) = p_1[\sup_1 X - E_1 X] + \dots + p_r[\sup_r X - E_r X]$$
  

$$\mathcal{V}(X) = \begin{cases} 0 & \text{if } p_1 \sup_1 X + \dots + p_r \sup_r X \le 0, \\ \infty & \text{otherwise} \end{cases}$$
  

$$\mathcal{E}(X) = \begin{cases} E|p_1 E_1 X + \dots + p_r E_r X| & \text{if } p_1 \sup_1 X + \dots + p_r \sup_r X \le 0, \\ \infty & \text{otherwise} \end{cases}$$

**General Relationships** 

$$\mathcal{D}(X) = \mathcal{R}(X) - EX, \qquad \mathcal{R}(X) = EX + \mathcal{D}(X)$$
$$\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \mathcal{V}(X) = EX + \mathcal{E}(X)$$
$$\mathcal{D}(X) = \min_{C} \{ \mathcal{E}(X - C) \}, \qquad \mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}$$
$$\mathcal{S}(X) = \underset{C}{\operatorname{argmin}} \{ \mathcal{E}(X - C) \} = \underset{C}{\operatorname{argmin}} \{ C + \mathcal{V}(X - C) \}$$

### **Truncated-Mean-Based Quadrangle**

$$T_{\beta}(x) = \begin{cases} \beta & \text{when } x \ge \beta, \\ x & \text{when } -\beta \le x \le \beta, \\ -\beta & \text{when } x \le -\beta. \end{cases}$$

 $S(X) = \mu_{\beta}(X) =$ value of C such that  $E[T_{\beta}(X - C)] = 0$ 

 $\mathcal{R}(X) = \mu_{\beta}(X) + E[v(X - \mu_{\beta}(X))] \text{ for } v \text{ as below}$ 

 $\mathcal{D}(X) = E[e(X - \mu_{\beta}(X))]$  for *e* as below

$$\mathcal{V}(X) = E[v(X)] \text{ with } v(x) = \begin{cases} -\frac{\beta}{2} & \text{when } x \leq -\beta \\ x + \frac{1}{2\beta}x^2 & \text{when } |x| \leq \beta \\ 2x - \frac{\beta}{2} & \text{when } x \geq \beta \end{cases}$$

$$\mathcal{E}(X) = E[e(X)] \text{ with } e(x) = \begin{cases} |x| - \frac{\beta}{2} & \text{when } |x| \geq \beta \\ \frac{1}{2\beta}x^2 & \text{when } |x| \leq \beta \end{cases} \text{ Huber-type error}$$

$$\frac{\mathcal{O}(X) = \mathcal{R}(X) - \mathcal{E}X, \quad \mathcal{R}(X) = \mathcal{E}X + \mathcal{O}(X)}{\mathcal{E}(X) = \mathcal{V}(X) - \mathcal{E}X, \quad \mathcal{V}(X) = \mathcal{E}X + \mathcal{E}(X)}$$

$$\mathcal{O}(X) = \min_{C} \{\mathcal{E}(X - C)\}, \quad \mathcal{R}(X) = \min_{C} \{C + \mathcal{V}(X - C)\} \\ \mathcal{S}(X) = \operatorname{argmin}_{C} \{\mathcal{E}(X - C)\} = \operatorname{argmin}_{C} \{C + \mathcal{V}(X - C)\} \end{cases}$$

$$\frac{\mathcal{O}(X) = \operatorname{argmin}_{C} \{\mathcal{E}(X - C)\} = \operatorname{argmin}_{C} \{C + \mathcal{V}(X - C)\} \\ \mathcal{O}(X) = \operatorname{argmin}_{C} \{\mathcal{E}(X - C)\} = \operatorname{argmin}_{C} \{C + \mathcal{V}(X - C)\} \end{cases}$$

### Log-Exponential-Based Quadrangle

 $\mathcal{S}(X) = \log E[\exp X] = \operatorname{expression} \operatorname{dual} \operatorname{to} \operatorname{Boltzmann-Shannon} \operatorname{entropy} \mathcal{R}(X) = \log E[\exp X] = \operatorname{yes}$ , the same as  $\mathcal{S}(X)$  $\mathcal{D}(X) = \log E[\exp(X - EX)] = \operatorname{log-exponential} \operatorname{deviation}$  $\mathcal{V}(X) = E[\exp X - 1] \operatorname{regret} \longleftrightarrow \operatorname{utility} \mathcal{U}(Y) = E[1 - \exp(-Y)]$  $\mathcal{E}(X) = E[\exp X - X - 1] = \operatorname{exponential} \operatorname{error}$ 

$$\mathcal{D}(X) = \mathcal{R}(X) - EX, \qquad \mathcal{R}(X) = EX + \mathcal{D}(X)$$
  
General Relationships  
$$\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \mathcal{V}(X) = EX + \mathcal{E}(X)$$
  
$$\mathcal{D}(X) = \min_{C} \{ \mathcal{E}(X - C) \}, \qquad \mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}$$
  
$$\mathcal{S}(X) = \underset{C}{\operatorname{argmin}} \{ \mathcal{E}(X - C) \} = \underset{C}{\operatorname{argmin}} \{ C + \mathcal{V}(X - C) \}$$

### **Rate-Based Quadrangle**

$$\begin{split} \mathcal{S}(X) &= r(X) = \text{ unique } C \geq \sup X - 1 \text{ such that } E\Big[\frac{1}{1 - X + C}\Big] = 1\\ \mathcal{R}(X) &= r(X) + E\Big[\log \frac{1}{1 - X + r(X)}\Big]\\ \mathcal{D}(X) &= r(X) + E\Big[\log \frac{1}{1 - X + r(X)} - X\Big]\\ \mathcal{V}(X) &= E\Big[\log \frac{1}{1 - X}\Big] \text{ regret } &\longleftrightarrow \text{ utility } \mathcal{U}(Y) = E[\log(1 + Y)]\\ \mathcal{E}(X) &= E\Big[\log \frac{1}{1 - X} - X\Big] \end{split}$$

 $\mathcal{D}(X) = \mathcal{R}(X) - EX, \qquad \mathcal{R}(X) = EX + \mathcal{D}(X)$ General Relationships  $\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \mathcal{V}(X) = EX + \mathcal{E}(X)$  $\mathcal{D}(X) = \min_{C} \{ \mathcal{E}(X - C) \}, \qquad \mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}$  $\mathcal{S}(X) = \underset{C}{\operatorname{argmin}} \{ \mathcal{E}(X - C) \} = \underset{C}{\operatorname{argmin}} \{ C + \mathcal{V}(X - C) \}$ 

### Mix-Quantile-Based Quadrangle

 $\alpha_i \in (0, 1)$  and weights  $\lambda_k > 0$ ,  $\sum_{k=1}^r \lambda_k = 1$ 

 $\mathcal{S}(X) = \sum_{k=1}^{r} \lambda_k q_{\alpha_k}(X) = \sum_{k=1}^{r} \lambda_k \operatorname{VaR}_{\alpha_k}(X) = a \text{ mixture}^{12} \text{ of quantiles of } X$  $\mathcal{R}(X) = \sum_{k=1}^{r} \lambda_k \overline{q}_{\alpha_k}(X) = \sum_{k=1}^{r} \lambda_k \text{CVaR}_{\alpha_k}(X)$ = the corresponding mixture of superquantiles of X  $\mathcal{D}(X) = \sum_{k=1}^{r} \lambda_k \overline{q}_{\alpha_k} (X - EX) = \sum_{k=1}^{r} \lambda_k \text{CVaR}_{\alpha_k} (X - EX)$ = the corresponding mixture of superquantile deviations of X  $\mathcal{V}(X) = \min_{B_1,\dots,B_r} \left\{ \left| \sum_{k=1}^r \lambda_k \mathcal{V}_{\alpha_k} (X - B_k) \right| \left| \sum_{k=1}^r \lambda_k B_k = 0 \right\} \right\}$ = a derived balance of the regrets  $\mathcal{V}_{\alpha_k}(X) = \frac{1}{1-\alpha_k} E X_+$  $\mathcal{E}(X) = \min_{B_1,\dots,B_r} \left\{ \left| \sum_{k=1}^r \lambda_k \mathcal{E}_{\alpha_k} (X - B_k) \right| \left| \sum_{k=1}^r \lambda_k B_k = 0 \right\} \right\}$ = a derived balance of the errors  $\mathcal{E}_{\alpha_k}(X) = E[\frac{\alpha_k}{1-\alpha_k}X_+ + X_-]$  $\mathcal{D}(X) = \mathcal{R}(X) - EX, \qquad \mathcal{R}(X) = EX + \mathcal{D}(X)$  $\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \mathcal{V}(X) = EX + \mathcal{E}(X)$  $\mathcal{D}(X) = \min_{C} \{ \mathcal{E}(X - C) \}, \qquad \mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}$ General Relationships  $\mathcal{S}(X) = \underset{C}{\operatorname{argmin}} \{ \mathcal{E}(X - C) \} = \underset{C}{\operatorname{argmin}} \{ C + \mathcal{V}(X - C) \}$ 28

### Quantile-Radius-Based Quadrangle

- $\mathcal{S}(X) = \frac{1}{2} [q_{\alpha}(X) q_{1-\alpha}(X)] = \frac{1}{2} [\operatorname{VaR}_{\alpha}(X) \operatorname{VaR}_{1-\alpha}(X)]$ = the  $\alpha$ -quantile radius of X, or  $\frac{1}{2}$  two-tail-VaR $_{\alpha}$  of X
- $\begin{aligned} \mathcal{R}(X) &= EX + \frac{1}{2} [\overline{q}_{\alpha}(X) + \overline{q}_{\alpha}(-X)] = EX + \frac{1}{2} [\operatorname{CVaR}_{\alpha}(X) + \operatorname{CVaR}_{\alpha}(-X)] \\ &= \operatorname{reverted} \, \operatorname{CVaR}_{\alpha} \end{aligned}$

$$\mathcal{D}(X) = \frac{1}{2} [\overline{q}_{\alpha}(X) + \overline{q}_{\alpha}(-X)] = \frac{1}{2} [\operatorname{CVaR}_{\alpha}(X) + \operatorname{CVaR}_{\alpha}(-X)]$$
  
= the  $\alpha$ -superquantile radius of  $X$ 

$$\begin{split} \mathcal{V}(X) &= EX + \min_{B} \Big\{ \frac{1}{2(1-\alpha)} E\Big[ [B+X]_{+} + [B-X]_{+} \Big] - B \Big\} \\ &= \alpha \text{-quantile-radius regret in } X \end{split}$$

$$\begin{aligned} \mathcal{E}(X) &= \frac{1}{2(1-\alpha)} \min_{B} E\Big[ [B+X]_{+} + [B-X]_{+} \Big] \\ &= \alpha \text{-quantile-radius error in } X \end{aligned}$$

General Relationships

$$\mathcal{D}(X) = \mathcal{R}(X) - EX, \qquad \mathcal{R}(X) = EX + \mathcal{D}(X)$$
$$\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \mathcal{V}(X) = EX + \mathcal{E}(X)$$
$$\mathcal{D}(X) = \min_{C} \{ \mathcal{E}(X - C) \}, \qquad \mathcal{R}(X) = \min_{C} \{ C + \mathcal{V}(X - C) \}$$
$$\mathcal{S}(X) = \operatorname*{argmin}_{C} \{ \mathcal{E}(X - C) \} = \operatorname*{argmin}_{C} \{ C + \mathcal{V}(X - C) \} \qquad 29$$

### **Quadrangle Theorem**

(a) The relations  $\mathcal{D}(X) = \mathcal{R}(X) - EX$  and  $\mathcal{R}(X) = EX + \mathcal{D}(X)$  give a one-to-one correspondence between regular measures of risk  $\mathcal{R}$  and regular measures of deviation  $\mathcal{D}$ . In this correspondence,  $\mathcal{R}$ is positively homogeneous if and only if  $\mathcal{D}$  is positively homogeneous. On the other hand,

$$\mathcal{R}$$
 is monotonic if and only if  $\mathcal{D}(X) \leq \sup X - EX$  for all  $X$ . (3.16)

(b) The relations  $\mathcal{E}(X) = \mathcal{V}(X) - EX$  and  $\mathcal{V}(X) = EX + \mathcal{E}(X)$  give a one-to-one correspondence between regular measures of regret  $\mathcal{V}$  and regular measures of error  $\mathcal{E}$ . In this correspondence,  $\mathcal{V}$  is positively homogeneous if and only if  $\mathcal{E}$  is positively homogeneous. On the other hand,

 $\mathcal{V}$  is monotonic if and only if  $\mathcal{E}(X) \leq EX$  when  $X \leq 0$ . (3.17)

(c) For any regular measure of regret  $\mathcal{V}$ , a regular measure of error  $\mathcal{R}$  is obtained by

$$\mathcal{R}(X) = \min_{C} \Big\{ C + \mathcal{V}(X - C) \Big\}.$$
(3.18)

If  $\mathcal{V}$  is positively homogeneous, then  $\mathcal{R}$  is positively homogeneous, and if  $\mathcal{V}$  is monotonic, then  $\mathcal{R}$  is monotonic.

(d) For any regular measure of error  $\mathcal{E}$ , a regular measure of deviation  $\mathcal{D}$  is obtained by

$$\mathcal{D}(X) = \min_{C} \Big\{ \mathcal{E}(X - C) \Big\}.$$
(3.19)

If  $\mathcal{E}$  is positively homogeneous, then  $\mathcal{D}$  is positively homogeneous, and if  $\mathcal{E}$  satisfies the condition in (3.17), then  $\mathcal{D}$  satisfies the condition in (3.18).

(e) In both (c) and (d), as long as the expression being minimized is finite for some C, the set of C values for which the minimum is attained is a nonempty, closed, bounded interval.<sup>27</sup> Moreover when  $\mathcal{V}$  and  $\mathcal{E}$  are paired as in (b), the interval comes out the same and gives the associated statistic:

$$\mathcal{S}(X) = \underset{C}{\operatorname{argmin}} \{ \mathcal{E}(X - C) \} = \underset{C}{\operatorname{argmin}} \{ C + \mathcal{V}(X - C) \}.$$
(3.20)

### **Mixing and Scaling Theorems**

Mixing Theorem. For k = 1, ..., r let  $(\mathcal{R}_k, \mathcal{D}_k, \mathcal{V}_k, \mathcal{E}_k)$  be a regular quadrangle quartet with statistic  $\mathcal{S}_k$ , and consider any weights  $\lambda_k > 0$  with  $\lambda_1 + \cdots + \lambda_r = 1$ . A regular quadrangle quartet  $(\mathcal{R}, \mathcal{D}, \mathcal{V}, \mathcal{E})$  with statistic  $\mathcal{S}$  is given then by

$$S(X) = \lambda_1 S_1(X) + \dots + \lambda_r S_r(X),$$
  

$$\mathcal{R}(X) = \lambda_1 \mathcal{R}_1(X) + \dots + \lambda_r \mathcal{R}_r(X),$$
  

$$\mathcal{D}(X) = \lambda_1 \mathcal{D}_1(X) + \dots + \lambda_r \mathcal{D}_r(X),$$
  

$$\mathcal{V}(X) = \min_{B_1,\dots,B_r} \left\{ \sum_{k=1}^r \lambda_k \mathcal{V}_k(X - B_k) \middle| \sum_{k=1}^r \lambda_k B_k = 0 \right\},$$
  

$$\mathcal{E}(X) = \min_{B_1,\dots,B_r} \left\{ \sum_{k=1}^r \lambda_k \mathcal{E}_k(X - B_k) \middle| \sum_{k=1}^r \lambda_k B_k = 0 \right\}.$$
(3.22)

Scaling Theorem. Let  $(\mathcal{R}_0, \mathcal{D}_0, \mathcal{V}_0, \mathcal{E}_0)$  be a regular quadrangle quartet with statistic  $\mathcal{S}_0$  and consider any  $\lambda \in (0, \infty)$ . Then a regular quadrangle quartet  $(\mathcal{R}, \mathcal{D}, \mathcal{V}, \mathcal{E})$  with statistic  $\mathcal{S}$  is given by

$$S(X) = S_0(X),$$
  

$$\mathcal{R}(X) = (1 - \lambda)EX + \lambda \mathcal{R}_0(X),$$
  

$$\mathcal{D}(X) = \lambda \mathcal{D}_0(X),$$
  

$$\mathcal{V}(X) = (1 - \lambda)EX + \lambda \mathcal{V}_0(X),$$
  

$$\mathcal{E}(X) = \lambda \mathcal{E}_0(X).$$
  
(3.23)

### **Envelope** Theorem

**Envelope Theorem<sup>58</sup>.** The functionals  $\mathcal{J}$  that are the conjugates  $\mathcal{R}^*$  of the regular measures of risk  $\mathcal{R}$  on  $\mathcal{L}^2(\Omega)$  are the closed convex functionals  $\mathcal{J}$  with effective domains  $\mathcal{Q} = \operatorname{dom} \mathcal{J}$  such that

- (a) EQ = 1 for all  $Q \in Q$ ,
- (b)  $0 = \mathcal{J}(1) \leq \mathcal{J}(Q)$  for all  $Q \in \mathcal{Q}$ ,

(c) for each nonconstant  $X \in \mathcal{L}^2(\Omega)$  there exists  $Q \in \mathcal{Q}$  such that  $E[XQ] - EX > \mathcal{J}(Q)$ . The dual representation of  $\mathcal{R}$  corresponding to  $\mathcal{J} = \mathcal{R}^*$  is

$$\mathcal{R}(X) = \sup_{Q \in \mathcal{Q}} \Big\{ E[XQ] - \mathcal{J}(Q) \Big\}.$$
(6.8)

Here  $\mathcal{R}$  is positively homogeneous if and only if  $\mathcal{J}(Q) = 0$  for all  $Q \in \mathcal{Q}$ , whereas  $\mathcal{R}$  is monotonic if and only if  $Q \ge 0$  for all  $Q \in \mathcal{Q}$ .

If  $\mathcal{V}$  is a regular measure of regret that projects to  $\mathcal{R}$ , then  $\mathcal{Q} = \{Q \in \operatorname{dom} \mathcal{V}^* | EQ = 1\}$  and the conjugate  $\mathcal{J} = \mathcal{R}^*$  has  $\mathcal{J}(Q) = \mathcal{V}^*(Q)$  for  $Q \in \mathcal{Q}$ .

The error measure  $\mathcal{E}$  paired with the regret measure  $\mathcal{V}$  has  $\mathcal{E}^*(X) = \mathcal{V}^*(X+1)$ . Likewise, the deviation measure  $\mathcal{D}$  paired with the risk measure  $\mathcal{R}$  has  $\mathcal{D}^*(X) = \mathcal{R}^*(X+1)$ .

### Examples of Risk Envelopes

$$\begin{aligned} \mathcal{R}(X) &= EX + \lambda \sigma(X) \longleftrightarrow \mathcal{Q} = \left\{ \left. 1 + \lambda Y \right| ||Y||_2 \le 1, \ EY = 0 \right\} \\ \mathcal{R}(X) &= \operatorname{CVaR}_{\alpha}(X) \longleftrightarrow \mathcal{Q} = \left\{ \left. Q \right| \ 0 \le Q \le \frac{1}{1-\alpha}, \ EQ = 1 \right\} \\ \mathcal{R}(X) &= \sup X \longleftrightarrow \mathcal{Q} = \left\{ \left. Q \right| Q \ge 0, \ EQ = 1 \right\} \\ \mathcal{R}(X) &= \sum_{k=1}^{r} \lambda_k \mathcal{R}_k(X) \longleftrightarrow \mathcal{Q} = \left\{ \left. \sum_{k=1}^{r} \lambda_k Q_k \right| Q_k \in \mathcal{Q}_k \right\}, \ \text{where} \ \mathcal{R}_k \longleftrightarrow \mathcal{Q}_k. \\ \mathcal{R}(X) &= \sum_{k=1}^{r} p_k \sup_k X \longleftrightarrow \mathcal{Q} = \left\{ \left. Q \ge 0 \right| E[Q|\Omega_k] = p_k \right\} \\ \mathcal{R}(X) &= \log E[\exp X] \longleftrightarrow \mathcal{J}(Q) = \left\{ \begin{array}{c} E[Q\log Q] & \text{if } Q \ge 0, \ EQ = 1, \\ \infty & \text{otherwise.} \end{array} \right. \end{aligned}$$

## Library of Test Problems

- Google: URYASEV
- Go to the first link: University of Florida home page of URYASEV: <u>http://www.ise.ufl.edu/uryasev/</u>
- Go to "Test problems with data and calculation results:" <u>http://www.ise.ufl.edu/uryasev/testproblems/</u>

## **Hedging Strategies for Equities**

This part of the presentation is based on paper

Serraino, G. and S. Uryasev. Protecting Equity Investments: Options, Inverse ETFs, Hedge Funds, and AORDA Portfolios. American Optimal Decisions, Gainesville, FL. March 17, 2011.

link: <a href="http://www.aorda.com/aod/static/documents/Protecting\_Equity\_Investments.pdf">www.aorda.com/aod/static/documents/Protecting\_Equity\_Investments.pdf</a>

 References on cited further papers can be found in Serraino and Uryasev paper

### S&P500 01/1950 - 09/2011 (Yahoo Finance)



#### <u>12 years of market stagnation: LARGE LOSSES for investors.</u>

- Assumptions: 2% management fees per year (combined fees of the advisor and mutual funds) + 3% inflation = total loss 5% per year in constant (uninflated) dollars.
- Total cumulative loss 46% of purchasing power in constant dollars over the recent 12 years, 1-0.95^12= 0.46

#### Hedging with Put Options and Portfolio Insurance

- CBOE PutWrite Index sells at-the-money put options on S&P500 on monthly basis
- (Profits PutWrite) > (Profits S&P500), i.e. S&P500 protection costs more than profits from S&P500. Similar statement is valid for portfolios insurance approaches.



SPX vs PUT Jul 2006-Sep 2011

CBOE S&P500 PutWrite Index vs. S&P500. Source: <u>www.cboe.com</u> 37

## Hedging with Inverse ETFs

- Exchange Traded Fund SH provides negative returns of S&P500
- SH is not a good long-term hedge against S&P500 drawdowns



S&P500 vs SH, Jul 2006 – Oct 2011. Yahoo Finance.

#### Hedge Funds: Positive and Negative Volatility Exposure

- Bondarenko (2004) shows that for most categories of hedge funds a significant fraction of returns can be explained by a negative loading on a volatility factor. i.e., the majority of hedge funds <u>short</u> volatility.
- Lo (2001, 2010) describes a hypothetical hedge fund, "Capital Decimation Partners", shorting out-of-the-money S&P500 put options on monthly basis with strikes approximately 7% out of the money.
- Agarwal and Naik (2004): many hedge fund categories exhibit returns similar to those from selling put options, and have a negative exposure to volatility risk.

Capital Decimation Partners, L.P.

Monthly Performance History

| Statistic                  | S&P 500 | CDP     |   | Month      | 19            | 92           | 19            | 93         | 19            | 994         | 19           | 95         | 19            | 96           | 19            | 97          | 19          | 98            | 19          | 99              |
|----------------------------|---------|---------|---|------------|---------------|--------------|---------------|------------|---------------|-------------|--------------|------------|---------------|--------------|---------------|-------------|-------------|---------------|-------------|-----------------|
| Statistic                  | 5&1 500 | ODI     |   | anounu     | SPX           | CDP          | SPX           | CDP        | SPX           | CDP         | SPX          | CDP        | SPX           | CDP          | SPX           | CDP         | SPX         | CDP           | SPX         | CDP             |
| Monthly Mean               | 1.4%    | 3.7%    | - | Jan        | 8.2           | 8.1          | -1.2          | 1.8        | 1.8           | 2.3         | 1.3          | 3.7        | -0.7          | 1.0          | 3.6           | 4.4         | 1.6         | 15.3          | 5.5         | 10.1            |
| Monthly Std. Dev.          | 3.6%    | 5.8%    |   | Feb<br>Mar | -1.8<br>0.0   | 9.3<br>4.9   | -0.4<br>3.7   | 1.0<br>3.6 | $-1.5 \\ 0.7$ | 0.7         | 3.9<br>2.7   | 0.7        | $5.9 \\ -1.0$ | 1.2<br>0.6   | $3.3 \\ -2.2$ | 6.0<br>3.0  | 7.6<br>6.3  | 11.7<br>6.7   | -0.3<br>4.8 | 16.6<br>10.0    |
| Min Month                  | -8.9%   | -18.3%  |   | Apr<br>May | 1.2           | 3.2          | -0.3<br>-0.7  | 1.6        | -5.3          | -0.1        | 2.6          | 2.4        | 0.6           | 3.0          | -2.3          | 2.8         | 2.1         | 3.5           | 1.5         | 7.2             |
| Max Month                  | 14.0%   | 27.0%   |   | Jun        | -1.6          | 0.6          | -0.5          | 1.7        | 0.8           | 1.5         | 5.0          | 1.8        | -0.3          | 2.0          | 8.3           | 4.9         | -0.7        | 3.9           | 0.9         | 8.6             |
| Annual Sharpe Ratio        | 0.98    | 1.94    |   | Jul<br>Aug | $3.0 \\ -0.2$ | 1.9<br>1.7   | 0.5<br>2.3    | 1.9<br>1.4 | -0.9<br>2.1   | 0.4<br>2.9  | $1.5 \\ 1.0$ | 1.6<br>1.2 | -4.2<br>4.1   | $0.3 \\ 3.2$ | -1.6          | 5.5<br>2.6  | 7.8<br>-8.9 | -18.3         | 5.7 - 5.8   | $^{6.1}_{-3.1}$ |
| # Negative Months          | 36/96   | 6/96    |   | Sep<br>Oct | $1.9 \\ -2.6$ | -2.0<br>-2.8 | 0.6<br>2.3    | 0.8<br>3.0 | $1.6 \\ -1.3$ | 0.8<br>0.9  | 4.3<br>0.3   | 1.3<br>1.1 | 3.3<br>3.5    | 3.4<br>2.2   | $5.5 \\ -0.7$ | 11.5<br>5.6 | -5.7<br>3.6 | -16.2<br>27.0 | -0.1        | 8.3 - 10.7      |
| Correlation with S&P $500$ | 100.0%  | 59.9%   |   | Nov<br>Dec | 3.6<br>3.4    | 8.5<br>1.2   | $-1.5 \\ 0.8$ | 0.6        | -0.7<br>-0.6  | 2.7<br>10.0 | 2.6<br>2.7   | 1.4<br>1.5 | 3.8<br>1.5    | 3.0<br>2.0   | 2.0 - 1.7     | 4.6<br>6.7  | 10.1<br>1.3 | 22.8<br>4.3   | -0.1        | 14.5<br>2.4     |
| Total Return               | 367.1%  | 2721.3% |   | Year       | 14.0          | 46.9         | 5.7           | 23.7       | -1.6          | 33.6        | 34.3         | 22.1       | 21.5          | 28.9         | 26.4          | 84.8        | 24.5        | 87.3          | 20.6        | 105.7           |

Capital Decimation Partners, L.P. Performance Summary, January 1992 to December 1999

#### S&P500 vs VIX

- VIX is implied volatility from prices of options on S&P500 (Jan 2006 Jan 2011 graph)
- Hedge funds with long volatility exposure provide good hedging protection for investors because they have high returns when the market goes down and when volatility is high.
- Volatility is very volatile (as measured by VIX)



#### Negative Correlation of VIX and S&P500

▶ When VIX rises the stock prices fall, and as VIX falls, stock prices rise



#### Volatility is Very Volatile

 VIX volatility was higher than volatility of VX Near-Term futures, S&P500 (SPX), Nasdaq100 (NDX), Russell 2000 (RUT), stocks, including Google and Apple.

| Name         | 12/31/08 | 2008       | Name         | 12/31/09 | 2009       |
|--------------|----------|------------|--------------|----------|------------|
|              | Price    | Volatility |              | Price    | Volatility |
| VIX          | 40.00    | 127.3%     | VIX          | 21.68    | 88.9%      |
| VX Near-Term | 41.94    | 88.9%      | VX Near-Term | 22.95    | 69.2%      |
| Futures      |          |            | Futures      |          |            |
| SPX          | 903.25   | 41.0%      | SPX          | 1,115.10 | 27.3%      |
| NDX          | 1,211.65 | 42.3%      | NDX          | 1,860.31 | 26.5%      |
| RUT          | 499.45   | 46.4%      | RUT          | 625.39   | 36.2%      |
| GOOG         | 307.65   | 55.2%      | GOOG         | 619.98   | 30.1%      |
| AAPL         | 85.35    | 58.2%      | AAPL         | 210.73   | 33.7%      |

### Good Hedge Funds

- Hedge funds with long volatility exposure provide good hedging protection for investors because they have high returns when the market goes down and when volatility is high.
- Dedicated short bias (DSB) hedge funds, for which short selling is the main source of return have positive performance when the markets fall, exhibited extremely strong results during market downturn.
- Connolly and Hutchinson (2010) show that DSB hedge funds are a significant source of diversification for investors and produce statistically significant levels of alpha



- American Optimal Advisors website <u>http://www.aorda.com/aoa/</u>
- AORDA\_Portfolios.pdf can be downloaded from <u>http://www.aorda.com/aoa/static/documents/investments/AORDA\_Portfolios.pdf</u>
- AORDA Portfolios invest to S&P500 index and NASDAQ100 index using the index tracking funds at RYDEX Family of Funds
- "Buy low sell high" strategy on daily basis; no positions overnight in the indices.

#### **AORDA Portfolios at RYDEX**

#### CVaR optimal portfolio

Maximizing expected return

Risk constraint (90%-CVaR is bounded)

Budget constraint

$$\sum_{i=1}^{I} x_i = U$$

max ExpectedReturn $(\vec{x})$ 

 $\text{CVaR}_{90\%}(\vec{x}) \leq w$ 

Bounds on exposures

 $l_i \leq x_i \leq u_i$ 

where:

I = number of instruments in the portfolio, i=1,...,I;

 $\vec{x}$  = vector of decision variables, i.e., portfolio weights assigned to each instrument;

w = upper bound for CVaR risk;

U = available capital;

- $l_i$  = lower bound on exposure to instrument i ;
- $u_i$  = upper bound on exposure to instrument *i*.

#### AORDA Portfolios at RYDEX (Show aorda\_portfolios.pdf)

Portfolio 2 "mirrors" S&P500, and it is negatively correlated with S&P500. On the other hand, Portfolio 2 has a quite high positive return (doubling the value every 3 years). Portfolio 2 has properties of long volatility strategy: it achieves high positive return (exceeding market loss) in bear markets and still attains a positive return (on average) in bull markets. Portfolio 3, which is a mixture of the S&P500 and Portfolio 2, performs quite well both in up and down markets.



AORDA Portfolios vs. S&P500

#### AORDA Portfolios at RYDEX (Show www.AORDA.com)

- Left Fig.: negative quarterly returns of S&P500 vs AORDA Portfolio 2 for Jan 2005 - Dec 2010. In all quarters when market return was negative Portfolio 2 had a positive return.
- Right Fig.: positive quarterly returns of S&P500 vs AORDA Portfolio 2 for Jan 2005 - Sep 2011. When the market is up, portfolio 2 had slightly positive return on average. However, Portfolio 2 has tendency to lose when the market has especially high returns.



Portfolio #2 average = 0.61%, S&P500 (SPX) average = 5.95%

Portfolio #2 average = 13.86%, S&P500 (SPX) average = -8.29%

#### Trading Track Record of AORDA Portfolios

|                  | Portfolio #1 | Portfolio #2 | Portfolio #3 | S&P 500 (SPX) |
|------------------|--------------|--------------|--------------|---------------|
| Since Inception  | 111.77       | 324.80       | 162.74       | -6.64         |
| Inception/Annual | 11.76        | 23.90        | 15.39        | -1.01         |
| 2011 (Jan-Sep)   | 5.10         | 9.91         | 5.68         | -10.04        |
| 2010             | 19.61        | 42.15        | 31.22        | 12.78         |
| 2009             | -8.08        | -15.96       | 3.40         | 23.45         |
| 2008             | 39.63        | 90.56        | 15.15        | -38.49        |
| 2007             | 5.89         | 11.46        | 8.03         | 3.53          |
| 2006             | 16.06        | 34.15        | 32.00        | 13.62         |
| 2005             | 6.81         | 13.54        | 11.60        | 3.00          |

### Performance Summary of AORDA Portfolios (Cont'd)

| PERFORMANCE<br>CATEGORY                 | Portfolio #1 | Portfolio #2 | Portfolio #3 | S&P 500 (SPX) | NDX   | DJI   |
|-----------------------------------------|--------------|--------------|--------------|---------------|-------|-------|
| Cumulative Return (%)                   | 111.77       | 324.80       | 162.74       | -6.64         | 31.96 | 1.21  |
| Annual Compounded<br>Rate of Return (%) | 11.76        | 23.90        | 15.39        | -1.01         | 4.19  | 0.18  |
| Sharpe Ratio<br>(Risk Free = 0%)        | 1.16         | 1.15         | 1.10         | 0.02          | 0.31  | 0.09  |
| Sortino Ratio<br>(Risk Free = 0%)       | 2.72         | 2.75         | 2.08         | 0.02          | 0.43  | 0.12  |
| Correlation with<br>S&P500 (SPX) (%)    | -37.85       | -37.01       | 18.16        | 100           | 89.68 | 97.54 |
| Maximum Portfolio<br>Drawdown (%)       | 15.06        | 28.16        | 14.75        | 52.56         | 50.11 | 49.30 |
| Annual Standard<br>Deviation (%)        | 10.03        | 20.45        | 13.92        | 16.15         | 20.08 | 14.98 |
| Annual α-coefficient (%)                | 11.72        | 23.71        | 15.29        | n/a           | 5.81  | 1.04  |

| PORTFOLIO<br>PERFORMANCE CATEGORY                                                                                                      | 100% in S&P500 (SPX)<br>and<br>0% in Portfolio #2                                   | 75% in S&P500 (SPX)<br>and<br>25% in Portfolio #2                                  | 50% in S&P500 (SPX)<br>and<br>50% in Portfolio #2                                  |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Annualized ROR (Compounded) (%)                                                                                                        | -1.01                                                                               | 5.63                                                                               | 12.03                                                                              |
| Annualized Std. Deviation (%)                                                                                                          | 16.15                                                                               | 11.27                                                                              | 10.42                                                                              |
| Sortino Ratio                                                                                                                          | 0.02                                                                                | 0.75                                                                               | 2.39                                                                               |
| Sharpe Ratio                                                                                                                           | 0.02                                                                                | 0.54                                                                               | 1.15                                                                               |
| Largest Drawdown (%)                                                                                                                   | 52.56                                                                               | 29.73                                                                              | 13.52                                                                              |
|                                                                                                                                        |                                                                                     |                                                                                    |                                                                                    |
| PORTFOLIO<br>PERFORMANCE CATEGORY                                                                                                      | 100% in S&P500 (SPX)<br>and<br>0% in Portfolio #3                                   | 75% in S&P500 (SPX)<br>and<br>25% in Portfolio #3                                  | 50% in S&P500 (SPX)<br>and<br>50% in Portfolio #3                                  |
| PORTFOLIO<br>PERFORMANCE CATEGORY<br>Annualized ROR (Compounded) (%)                                                                   | 100% in S&P500 (SPX)<br>and<br>0% in Portfolio #3<br>-1.01                          | 75% in S&P500 (SPX)<br>and<br>25% in Portfolio #3<br>3.24                          | 50% in S&P500 (SPX)<br>and<br>50% in Portfolio #3<br>7.40                          |
| PORTFOLIO<br>PERFORMANCE CATEGORY<br>Annualized ROR (Compounded) (%)<br>Annualized Std. Deviation (%)                                  | 100% in S&P500 (SPX)<br>and<br>0% in Portfolio #3<br>-1.01<br>16.15                 | 75% in S&P500 (SPX)<br>and<br>25% in Portfolio #3<br>3.24<br>13.20                 | 50% in S&P500 (SPX)<br>and<br>50% in Portfolio #3<br>7.40<br>11.58                 |
| PORTFOLIO<br>PERFORMANCE CATEGORY<br>Annualized ROR (Compounded) (%)<br>Annualized Std. Deviation (%)<br>Sortino Ratio                 | 100% in S&P500 (SPX)<br>and<br>0% in Portfolio #3<br>-1.01<br>16.15<br>0.02         | 75% in S&P500 (SPX)<br>and<br>25% in Portfolio #3<br>3.24<br>13.20<br>0.39         | 50% in S&P500 (SPX)<br>and<br>50% in Portfolio #3<br>7.40<br>11.58<br>1.03         |
| PORTFOLIO<br>PERFORMANCE CATEGORY<br>Annualized ROR (Compounded) (%)<br>Annualized Std. Deviation (%)<br>Sortino Ratio<br>Sharpe Ratio | 100% in S&P500 (SPX)<br>and<br>0% in Portfolio #3<br>-1.01<br>16.15<br>0.02<br>0.02 | 75% in S&P500 (SPX)<br>and<br>25% in Portfolio #3<br>3.24<br>13.20<br>0.39<br>0.31 | 50% in S&P500 (SPX)<br>and<br>50% in Portfolio #3<br>7.40<br>11.58<br>1.03<br>0.68 |