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Introductory Words about Activities

» University of Florida webpage: www.ise.ufl.edu/uryasev/

= Publications
= Library of Test Problems with data, codes, and solutions

» American Optimal Decisions website

=  www.aorda.com/aod/

» American Optimal Advisors website

=  www.aorda.com/aoa/




Housing Bubble: Positive Aspects

» About 20% of USA GDP is coming from financial industry

= Credit derivatives and other derivatives were accounting up to

40% of bank profits prior to 2008 (i.e.,about 8% of USA GDP was
related to derivatives trading)

» Transfer recourses and generation of wealth
= Beautiful houses and commercial buildings in France, USA,...

» Leveraging (money borrowing): high return on investment
= Mortgage (root is death, i.e., you pay/leveraged until you are dead)
= High return on investment of banks and high salaries and taxes

» Top financial engineering approaches
= CDO (Collateralized Debt Obligations), CLO, ...

= Top mathematics, engineering, databases, management, ...



Fundamental Risk Quadrangle

risk R +— D deviation

optimization T & T estimation

regret V «— & error

R(X) provides a numerical surrogate for the overall hazard in X
D(X) measures the “nonconstancy” in X as its uncertainty,

£(X) measures the “nonzeroness” in X,

V(X)) measures the “regret” in facing the mix of outcomes of X,

S§(X) is the “statistic” associated with X through £ or equivalently V.



General Relationships

Risk versus deviation:
D(X) =R(X — EX), R(X) = EX +D(X)
Deviation from error:
D(X) =minc{&(X - C)}
Risk from regret:
R(X) =minc{C+ V(X - C)}
Error versus regret:
E(X)=V(X)— EX, V(X) = EX + &(X)
Statistic equivalently from error or regret:
S(X) = argminc{E(X — C)}.
S(X) = argmins{C + V(X - C)}



Mean-Based (St.Dev. Version) Quadrangle

R(X)=EX + Ao(X) = safety margin tail risk
D(X )= Ao(X) = standard deviation, scaled

V(X)=EX + \|X]||; = L*-regret, scaled
E(X) = \||X||o = L*-error, scaled
D(X)=R(X)-EX, TR(X)=EX+DX)
General Relationsh E(X)=V(X)—- EX, V(X)=EX + £(X)

D(X) =min{ £(X ~C)},  R(X)=min{C+ V(X -C)}
S(X) = argtzrlin{ EX-O)} = argglin{ C+V(X-0C)}



Mean-Based (Variance Version) Quadrangle

S(X)=EX = u(X)

R(X)=EX + Ao%(X)

D(X) = Ao*(X)

V(X)=EX + \||X|]2 = E[v(X)] for v(z) =z + Az?
E(X) = M| X3 = Ele(z)] for e(x) = Az?

D(X)=R(X)-EX, R(X)=EX+DX)
General Relationships E(X)=V(X)-EX, VIX)=EX +£(X)
D(X) =min{£(X —C)},  R(X)=min{C+ V(X -C)}

_______________________________ S(X)=argmin{ (X —C)} =argmin{C+ VX -C)} ___.
C c 8



VaR and CVaR
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Quantile-Based Quadrangle

(X) =7g,(X) = superquantile
(X —EX)=7,(X — EX) = superquantile-deviation

D(X)=CVaR,
V(X) = ﬁEX . = a penalty expression for regret as scaled average loss
E(X) = E[== X, + X_| = normalized Koenker-Bassett error

D(X)=R(X)— EX, R(X) = EX +D(X)
General Relationships E(X)=V(X)-EX, V(X)=EX+E(X)
D(X) =min{ (X —C)}.  R(X)=min{C + V(X - C)}

S(X) = argmin{ £(X — C) } = argmin{ C + V(X — C) }
c C



VaR vs CVaR in optimization

» VaR is difficult to optimize numerically when losses are not
normally distributed

» PSG package allows VaR optimization
» In optimization modeling, CVaR is superior to VaR:

» For elliptical distribution minimizing VaR, CVaR or Variance is
equivalent

» CVaR can be expressed as a minimization formula (Rockafellar
and Uryasey, 2000)

» CVaR preserve convexity



CVaR OPTIMIZATION: MATHEMATICAL BACKGROUND

We want to minimize CVaR (f (x,Y))
Definition

FxQ)=C+(I-a) E(f(xY)- Q"
=C+v Z( f (xy/)- C)*, in case of equally probable scenarios

v=((1-a)))' = const
Proposition 1.

CVaR,(x) = min g F(x,C) and VaR denoted by C(x) is a smallest minimizer

Proposition 2.
min xeX Cvach(f (X’Y)) = min CeR,xeX F(X’ C)) (I)

o Minimizing of F(x.C) simultaneously calculates VaR= {_(x), optimal decision x,
and optimal CVaR of f (x.Y)

o Problem (1) can be reduces to LP using additional variables



CVaR OPTIMIZATION (Cont’d)

e CVaR minimization

ming, .x; CVaR

can be reduced to the following linear programming (LP) problem

rnin{x eX,{eR,z¢e R'I} C tv Z{j=|’°°°’j} Zj
subject to

z,2f(xyl)-C, 220, j=1.] (v=((1-a)))' = const)

By solving LP we find an optimal x* , corresponding VaR, which equals
to the lowest optimal £ * and minimal CVaR, which equals to the
optimal value of the linear performance function



Stochastic Optimization

= Deterministic setting

minimize fg(z) over all x € S C IR™ subject to fi(z) <0 for i =1,...,m.

= Random values depending on decisions variables

Xo(z) = Lolz), Xi(z) = L1(2),.... Xm(®) = Ln(2)

= Stochastic Optimization Problem

(P) minimize f,(z) = Ro(fo(z)) over z € S subject to f,(z) =R;(f,(z)) <0,



Using Quadrangle in Optimization

Regret Theorem. Consider a stochastic optimization problem (E) in which each R; is a regu-
lar measure of risk coming from a regular measure of regret V; with associated statistic S; by the
quadrangle formulas

Ri(X) :mgfn{C—l—Vi(X—C)}: St-(X):a.rgénin{CJrVi(X—C)}. (5.4)

Solving (P.) can be cast then as solving the expanded problem

choose © = (x1,...,2,) and Cy, C1,...,Cp to
(P") minimize Co+Vy(f o(z) — Cp) over z € S, C; € R,
subject to C; +Vi(f;(x)—=C;) <0 fori=1,...,m

An optimal solution (z,Cy, C1,...,Cy) to problem (P') provides as & an optimal solution to problem
(P) and as C; a corresponding value of the statistic S;(f ,(z)) fori=0,1,...,m.



Factor Models: Percentile Regression

factors X,,.., X, from various sources of information

failureload Y

Y =C+C X +,...,+C, X, +& , where ¢ is an error term

Co+C X, +,..,+C, X, = direct estimator of percentile with
\ a confidence

- 10% points below line:

a =10%

X

[
»

Percentile regression (Koenker and Basset (1978))
CVaR regression (Rockafellar, Uryasev, Zabarankin (2003))



Percentile Error Function and CVaR Deviation

Statistical approach based on asymmetric percentile error
functions: E[(1-a)(-& )+ a&’] is called Percentile Regression

et = positive part of error
& = negative part of error

Success

Mean
Percentile CVaR deviation

CVaR




Error, Deviation, Statistic

» For the error Koenker and Basset error measure =:

the corresponding deviation measure < is CVaR deviation

D(X) = mcin EX-0)
the corresponding statistic K is percentile or VaR
S(X) = argmin E(X — ()

» Percentile regression estimates percentile or VaR which is
the statistic for the Quantile-based Quadrangle

» Similar results are valid for other quadrangles




Separation Principle

» General regression problem

min £ — [cp + c1 X1 + - + ¢, X, ])

€0,C1p=ln

is equivalent to

min D(Y — | ¢, X coe ¢ X,
Lo Y —[c Xy + -+, X, ])

st. ¢y € S(Y — [C1X1 + -+ chn])



General Regression Theorem

= Regression problem
flz1,....,2n) =Co+ Ciz1 +--- + Crzy
minimize £(Zy) over all f € C, where Z; =Y — f(X1,..., X,), (5.6)

of £ being a regular measure of error and C being a class of functions f : K™ — IR such that

Regression Theorem. Consider problem (5.6) for random variables X1, ..., X, and Y in the case

feC = f+CeC forall C € R. (5.8)

Let D and § correspond to £ as in the (Quadrangle Theorem. Problem (5.6) is equivalent then to the

following:
minimize D(Zy) over all f € C such that 0 € S(Z;). (5.9)

Moreover if £ is of expectation type and C includes a function f satisfyving

flz1....,xn) € S(Y(x1,...,2y)) almost surely for z1,...,2,) € D,

where Y (zy,...,20) =Yy, _;, . x _p (conditional distribution), (5.10)

with I being the support of the distribution in IR" induced by Xi....,Xy. then that f solves the
regression problem and tracks this conditional statistic in the sense that



Median-Based Quadrangle

S(X) = VaRy2(X) = q1/2(X)
median
R(X) = CVaRy5(X) = Q1/2(X)
= “supermedian” (average in tail above median)

— supermedian deviation

E(X) = E|X|
— Ll error
V(X) = 2E[X,]
= Ll regret D(X)=R(X) - EX. R(X)=EX +D(X)

E(X)=V(X)—EX, V(X)=EX+E&(X)

General Relationships P&X) =min{ (X =€)} R(X) =min{C + V(X - C)}
S(X) =argmin{ £(X — C) } = argmin{ C + V(X — C) }
' o



___________________________ Range-Based Quadrangle =~ =
S(X) = %[supX + inf X| = center of range of X (if bounded)
R(X) = EX + 3[sup X — inf X]| = range-buffered risk

(X) = g[sup X — inf X] = radius of the range of X (maybe o)
V(X)=FX +sup|X| = Lregret

E(X) =sup|X| = Lerror

>

D(X)=R(X)—EX, TR(X)=EX+D(X)
General Relationships E(X)=V(X)-EX, V(X)=EX + E(X)
D(X) = mén{ E(X —O) 1}, R(X) = ngn{C‘JrV{X - )}
S(X) = argglin{g{ﬁf —0)} = argé;rlin{ C+V(X-0))



Worst-Case-Based Quadrangle

S(X ) =sup X = top of the range of X (maybe o0)
R(X)=sup X = yes, the same as S(X)

D(X)=sup X — EX = span of the upper range of X (maybe oo)
- . t::
V(X) =4 0 HX <0 = worst-case-regret

0o if X £ 0

(E|IX| ifX <0
oo X ZO0

%

= Worst-case-error

D(X)=R(X)-EX, TR(X)=EX+DX)
General Relationships E(X)=V(X)—- EX, V(X)=EX +E&(X)
D(X) =min{EX — )}, R(X) =min{C+ V(X —C)}
S(X) = argénin{f{)f —)} = argglin{ C+V(X-0C)}



Distributed-Worst-Case-Based Quadrangle

pr. = probability of the kth set of circumstances, with pp >0, py +---+ p, = 1,
supp X = worst of X under circumstances k, for k=1,...,r,
Eir. X = conditional expectation of X under circumstances k.

S(X)=pisup; X + -+ prsup, X

R(X)=pysup; X +---+p,.sup, X = yes, the same as S(X)
D(X)=pi[sup; X — B4 X|+ -+ pplsup, X — E. X]

P(X) = {0 if pysup; X + -+ +p.sup, X <0,

oc otherwise

E(X) = {E|P1E1X+“-+PFETX| if pysup; X +--- 4+ ppsup, X <0,

00 otherwise

D(X)=R(X)— EX, R(X)=EX +D(X)

General Relationships E(X)=V(X)—EX., V(X)=EX +&(X)

D(X) =min{£(X ~C)},  R(X)=min{C +V(X ~O)}
S(X) = argénin{é'{X —0)} = argglin{ C+V(X-C)}



Truncated-Mean-Based Quadrangle

5 when xz > g,

Ts(x) = {m when —f < x < f3,
—f3  when z < —/.
S(X) = pg(X) = value of C such that E[T3(X — C)] =0
R(X) = pg(X)+ Ewv(X — pug(X))] for v as below
D(X) = Ele(X — pug(X))] for e as below
J when =z < —f

2
V(X) = E[v(X)] with v(z) = { =+ 552° when |z| <
kZm—g when = > 3

]
_ B wh >
|| 7 Whel x| =2 B Huber-type error

E£(X) = E[e(X)] with e(z) = {ngg when |z| < 8

R(X) = EX +D(X)
V(X)=EX + &(X)
R(X) = rrgn{C + V(X —-C)}

D(X)=R(X) - EX,

£(X) =V(X) - EX,

General Relationships
D(X) =min{ £(X — C)},

S(X)=argmin{E(X —C)} =argmin{C+ V(X - C) }
c co T



Log-Exponential-Based Quadrangle

S(X) = log Elexp X| = expression dual to Boltzmann-Shannon entropy

R(X) = log Flexp X| = yes, the same as §(X)

D(X) = log Elexp(X — EFX )] = log-exponential deviation
(X)=FElexpX — 1] regret <+— utility #(Y) = E[1 — exp(—Y)]

(X)

<

Flexp X — X — 1] = exponential error

D(X)=R(X)—EX, TR(X)=EX+D(X)
General Relationships E(X)=V(X)-EX, VX)=EX+£&(X)
D(X) =min{ (X - )}, R(X)=min{C+ V(X -C)}
S(X) =argmin{ £(X — C) } = argmin{ C + V(X — C) }
i i



Rate-Based Quadrangle
S(X)=r(X)= unique C' > sup X — 1 such that E[ﬁ} =1

R(X) =r(X) + E|log x5

D(X) = r(X) + E|log 1ty — X|

VIX)=F [lﬂg ﬁ] regret <+— utility U(Y) = Ellog(1 +Y)]

E(X) = E[lc}gﬁ _ X}

D(X)=R(X)— EX, R(X)=EX +D(X)
General Relationships E(X)=V(X)-EX, VX)=EX+EX)
D(X) = mén{ E(X —C)}, R(X) = Hgﬂ{C-FV{X -}
S(X) = argmin{ £(X — C) } = argmin{ C + V(X — C) }
C c



Mix-Quantile-Based Quadrangle

a; € (0,1) and weights A\, >0, >, _Ar =1

S(X) =251 Ak, (X) =251 AVaR, (X) =a mixture'? of quantiles of X
R(X) = 2 k=1 AkG,, (X) = 21 MCVaR,, (X)

= the corresponding mixture of superquantiles of X

D(X) = Yhoy MG, (X — EX) = Y1y MCVaR,, (X — EX)

= the corresponding mixture of superquantile deviations of X

VX) = min, { Ty AV, (X = Bi) | Thoy MBi =0 |

Bi.....Br
= a derived balance of the regrets V, (X) = 1_1% EX,
E(X) = Bgllifer{ S Al (X — By) ’ ST A By = 0}

= a derived balance of the errors £, (X) = E[37-X, + X |

D(X)=R(X)—-EX, TR(X)=EX+DX)
E(X)=V(X)-EX. V(X)=EX +&(X)
General Relationships DX) =min{£(X =€)}, R(X) =min{ C+ V(X =)}

S(X) = argmin{ £(X — C) } = argmin{ C + V(X — C) } 28
5 (o



Quantile-Radius-Based Quadrangle

S(X) = 3[¢a(X) = q1-a(X)] = 3[VaRa(X) — VaRi—a (X))
= the a-quantile radius of X, or % two-tail-VaR, of X
R(X)=EX +1[7.(X)+q,(—X)] = EX + 1[CVaR,(X) + CVaR,(—X)]
= reverted CVaR,
D(X) = 3[Ga(X) +Ta(~X)] = 3[CVaRa(X) + CVaRa(—X)]
— the a-superquantile radius of X
V(X) = EX+1’11111{ Si—a) [[B—I—X]Jr [B—X]+]—B}

= (- quantlle—radlus regret in X

E(X) = 51t I‘ﬂBillE[[B + X]; + [B - X

= a-quantile-radius error in X

D(X)=R(X)-EX. R(X)=EX+D(X)
E(X)=V(X)—EX, V(X)=EX+&(X)

General Relationships D(X) =min{£(X — )}, R(X) =min{C+V(X -C)}

S(X) = mgﬁr}lin{S(X -C)} = arggﬁn{ C+V(X-0C)} 29



Quadrangle Theorem

(a) The relations D(X) =R(X)— EX and R(X) = EX +D(X) give a one-to-one correspondence
between regular measures of risk R and regular measures of deviation D. In this correspondence, R
is positively homogeneous if and only if D is positively homogeneous. On the other hand,

R is monotonic if and only if D(X) <sup X — EX for all X. (3.16)

(b) The relations £(X) =V(X) — EX and V(X) = EX + £(X) give a one-to-one correspondence
between regular measures of regret V and regular measures of error £. In this correspondence, V' is
positively homogeneous if and only if £ is positively homogeneous. On the other hand,

V' is monotonic if and only if £(X) < EX when X < 0. (3.17)
(c) For any regular measure of regret V, a regular measure of error R is obtained by

R(X) = mén{ C+V(X-0)}. (3.18)

If'V is positively homogeneous, then R is positively homogeneous, and if V is monotonic, then R is
monotonic.
(d) For any regular measure of error £, a regular measure of deviation D is obtained by

D(X) = lnén{ EX-0)}. (3.19)

If € is positively homogeneous, then D is positively homogeneous, and if £ satisfies the condition in
(3.17), then D satisfies the condition in (3.18).

(e) In both (c¢) and (d), as long as the expression being minimized is finite for some C', the set of C
values for which the minimum is attained is a nonempty, closed, bounded interval ?” Moreover when
V and &€ are paired as in (b), the interval comes out the same and gives the associated statistic:

S(X) =argmin{ £(X — C) } = argmin{ C + V(X — C) }. (3.20)
C C



Mixing and Scaling Theorems

Mixing Theorem. Fork =1,...,7 let (Rg, Dk, Vi, E) be a regular quadrangle quartet with statistic
Sj.. and consider any weights )"k > 0 with A\; +---+ A, = 1. A regular quadrangle quartet (R, D, V,€)
with statistic S is given then by

S(X) = AS1(X) +-- + A5 (X),
)LLRl(X) cee )tT'R«r(X)q

(3.22)

.....

Bl,...,Br

Scaling Theorem. Let (Rg, Do, Vo, &) be a regular quadrangle quartet with statistic Sp and consider
any A € (0,00). Then a regular quadrangle quartet (R,D,V,E) with statistic § is given by

S(X) = So(X),

R(X) = (1 - M)EX + ARo(X),

D(X) = A\Dy(X), (3.23)
VX) = (1= NEX + \Wo(X),

£(X) = \o(X)



Envelope Theorem

Envelope Theorem®. The functionals J that are the conjugates R* of the regular measures of risk

R on 52(9) are the closed convex functionals [J with eflective domains O = dom J such that
(a) EQ =1 for all Q € Q,
(b) 0=J(1) < J(Q) forall Q € Q,
(¢) for each nonconstant X € £2(Q) there exists Q € Q such that E[XQ] — EX > J(Q).

The dual representation of R corresponding to J = R* is

R(X) = sup{ E[XQ] - J(Q) }. (6.8)
QeQ

Here R is positively homogeneous if and only if J(Q)) = 0 for all ) € Q, whereas R is monotonic if
and only if () =0 for all Q € O.

If V is a regular measure of regret that projects to R, then @ = {@Q € dom V* |EQ = 1} and the
conjugate J = R* has J(Q) = V*(Q) for Q € Q.

The error measure £ paired with the regret measure V has £*(X) = V*(X + 1). Likewise, the
deviation measure D paired with the risk measure R has D*(X)=R*(X +1).



Examples of Risk Envelopes

)
X) = CVaR,(X) «— Q:{Q’OgQgﬁ, EQzl}
X)=sup X +— Qz{Q|Q:30, EQ=1}
X) = Thot MRE(X) = Q= { Thoi Qi | Qr € Qi }, where Ry, «— Q.
)= pesup X —— Q={Q>0|E[QI%] =px |

=
-

R(X) = log Elexp X] +— J(Q) = {E[Q logQ] ifQ=>0,EQ=1,

00 otherwise.



Library of Test Problems

» Google: URYASEV

» Go to the first link: University of Florida home page of URYASEV:
http://www.ise.ufl.edu/uryasev/

» Go to “Test problems with data and calculation results:”

http://www.ise.ufl.edu/uryasev/testproblems/




Hedging Strategies for Equities

» This part of the presentation is based on paper

Serraino, G. and S. Uryasev. Protecting Equity Investments: Options, Inverse
ETFs, Hedge Funds, and AORDA Portfolios. American Optimal Decisions,
Gainesville, FL. March 17,201 1.

link: www.aorda.com/aod/static/documents/Protecting_Equity Investments.pdf

» References on cited further papers can be found in Serraino and Uryasev
paper
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» 12 years of market stagnation: LARGE LOSSES for investors.

= Assumptions: 2% management fees per year (combined fees of the advisor and mutual funds) + 3%
inflation = total loss 5% per year in constant (uninflated) dollars.

= Total cumulative loss 46% of purchasing power in constant dollars over the recent |2 years,
1-0.95"12=0.46



Hedging with Put Options and Portfolio Insurance

» CBOE PutWrite Index sells at-the-money put options on S&P500
on monthly basis

» (Profits PutWrite) > (Profits S&P500), i.e. S&P500 protection

costs more than profits from S&P500. Similar statement is valid
for portfolios insurance approaches.

SPX ws PUT Jul 2006-5Sep 2011
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- CBOE S&P500 PutWrite Index vs. S&P500. Source: www.cboe.com 37




Hedging with Inverse ETFs

» Exchange Traded Fund SH provides negative returns of S&P500
» SH is not a good long-term hedge against S&P500 drawdowns

Weekof Oct3,2011: wm*GSPC 1,15546 WSH 4496

< ey :

Qd‘ ke 20%

006 2007 Apr Tul Oct 2008 Apr Tul Oct 2009 Apr Tul Oct 1010 Apr Tul Oct 011 Apr Tul Oct

__________________________________



Hedge Funds: Positive and Negative Volatility Exposure

» Bondarenko (2004) shows that for most categories of hedge funds a significant
fraction of returns can be explained by a negative loading on a volatility factor.
i.e., the majority of hedge funds short volatility.

» Lo (2001,2010) describes a hypothetical hedge fund, "Capital Decimation
Partners”, shorting out-of-the-money S&P500 put options on monthly basis
with strikes approximately 7% out of the money.

» Agarwal and Naik (2004): many hedge fund categories exhibit returns similar to
those from selling put options, and have a negative exposure to volatility risk.

Capital Decimation Partners, L.P.

Capital Decimation Partners, L.P. R P Do oo s

Performance Summary, January 1992 to December 1999

1992 1F 1994 19605 19406, 1955 11HIx 1'rF)
Statistic S&P 500 CDP Mouth
SPX CDP SPX CDP SPX CDP SPX CDP SPX CDP SPX CDP SPX CDP SPX CDP
Monthly Mean L.4% 3.7% Jan 82 &1 12 18 18 23 13 7 07 10 36 44 16 153
Monthly Std. Dev. 3.6% 5.8% ‘ 15 9.3 04 ! 15 0.7 9 0.3 5.9 1.2 13 60 7.6 117 03 166
' \laz 0.0 L9 3.6 0.7 22 2.1 1.0 1.0 0.6 22 .0 63 6.7 |8 10.0
Min Month 8.9% 18.3% Al 12 3.2 16 26 24 i 23 2 35 15 7
Ma 14 1.3 7 13 21 1.6 7 i 83 ‘ 1 3 9 7
Max Month 11.0% 27.0% Jun 1.6 0.6 0.5 1.7 1.5 0 1.8 03 20 83 19 0 1.0 19 8¢
Ju 3.0 1.9 05 1.9 09 04 1.5 1.6 1.2 03 1.8 TR 75 5.7 G
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S&PS00 vs VIX

VIX is implied volatility from prices of options on S&P500 (jan 2006 — Jan 2011 graph)

Hedge funds with long volatility exposure provide good hedging protection for
investors because they have high returns when the market goes down and
when volatility is high.

Volatility is very volatile (as measured by VIX)

Week of Jul 16, 2007 :
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Negative Correlation of VIX and S&P3500

» WhenVIX rises the stock prices fall, and as VIX falls, stock prices rise

M
Lk

Negative Correlations
for Daily Returns of VIX vs, S&P 500
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Volatility is Very Volatile

» VIX volatility was higher than volatility of VX Near-Term futures, S&P500 (SPX),
Nasdaql00 (NDX), Russell 2000 (RUT), stocks, including Google and Apple.

12/31/08 2008 12/31/09 2009
Price  Volatility Price  Volatility

VIX 40.00 127.3% VIX 21.68 88.9%
VX Near-Term 4194 38.9% VX Near-Term 22.95 69.2%
Futures Futures

SPX 903.25 41.0% SPX 1,115.10 27.3%
NDX 1.211.65 42.3% NDX 1.860.31 26.5%
RUT 49945  46.4% RUT 62539  36.2%
GOOG 307.65  552% GOOG 61998  30.1%
AAPL 85.35 58.2% AAPL 210.73  33.7%




Good Hedge Funds

» Hedge funds with long volatility exposure provide good hedging protection for
investors because they have high returns when the market goes down and
when volatility is high.

» Dedicated short bias (DSB) hedge funds, for which short selling is the main
source of return have positive performance when the markets fall, exhibited
extremely strong results during market downturn.

» Connolly and Hutchinson (2010) show that DSB hedge funds are a significant
source of diversification for investors and produce statistically significant levels
of alpha

Week of Jul 16, 2007 : m “GSPC 1,534.10 - ~YIX 16.05
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AORDA Portfolios at RYDEX

» American Optimal Advisors website http://www.aorda.com/aoa/

» AORDA _Portfolios.pdf can be downloaded from

http://www.aorda.com/aoa/static/documents/investments/ AORDA_Portfolios.pdf

» AORDA Portfolios invest to S&P500 index and NASDAQ 100
index using the index tracking funds at RYDEX Family of Funds

» “Buy low sell high” strategy on daily basis; no positions overnight
in the indices.



AORDA Portfolios at RYDEX

CVaR optimal portfolio

Maximizing expected return
max ExpectedReturn(x)
Risk constraint (90%-CVaR is bounded)
CVaRggoe (X)) = w
Budget constraint

I
Xi = U
i=1
Bounds on exposures
Ei < X = U
where:

I = number of instruments in the portfolio, i=1,...,/ ;

X = vector of decision variables, i.e., portfolio weights assigned to each instrument;
w = upper bound for CVaR risk;

U = available capital;

[; = lower bound on exposure to instrument i ;

1; = upper bound on exposure to instrument /.



AORDA Portfolios at RYDEX (Show aorda_portfolios.pdf)

» Portfolio 2 “mirrors” S&P500, and it is negatively correlated with S&P500. On
the other hand, Portfolio 2 has a quite high positive return (doubling the value
every 3 years). Portfolio 2 has properties of long volatility strategy: it achieves
high positive return (exceeding market loss) in bear markets and still attains a
positive return (on average) in bull markets. Portfolio 3, which is a mixture of
the S&P500 and Portfolio 2, performs quite well both in up and down markets.
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AORDA Portfolios at RYDEX (Show www.AORDA.com)

Left Fig.: negative quarterly returns of S&P500 vs AORDA Portfolio 2 for Jan
2005 - Dec 2010. In all quarters when market return was negative Portfolio 2
had a positive return.

Right Fig.: positive quarterly returns of S&P500 vs AORDA Portfolio 2 for Jan
2005 - Sep 201 1. When the market is up, portfolio 2 had slightly positive return
on average. However, Portfolio 2 has tendency to lose when the market has
especially high returns.
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Trading Track Record of AORDA Portfolios

Portfolio #1 | Portfolio #2 | Portfolio #3 | S&P 500 (SPX)

Since Inception 1M1.77 324.80 162.74 -6.64
Inception/Annual 11.76 23.90 15.39 -1.01
2011 (Jan-Sep) 5.10 9.91 5.68 -10.04

2010 19.61 42.15 31.22 12.78

2009 -8.08 -15.96 3.40 23.45

2008 39.63 90.56 15.15 -38.49

2007 5.89 11.46 8.03 3.53

2006 16.06 34.15 32.00 13.62

2005 6.81 13.54 11.60 3.00




Performance Summary of AORDA Portfolios (Cont’d)

PERFORMANCE ; : :

CATEGORY Portfolio #1 | Portfolio #2 | Portfolio #3 | S&P 500 (SPX) | NDX | DJI
Cumulative Return (%) 111.77 324.80 162.74 -6.64 31.96 | 1.21
Annual Compounded

Rate of Return (%) 11.76 23.90 15.39 -1.01 419 | 0.18

Sharpe Ratio

(Risk Free = 0%) 1.16 1.15 1.10 0.02 0.31 | 0.09
Sortino Ratio
(Risk Free = 0%) 2.712 2.75 2.08 0.02 0.43 | 0.12
Correlation with
S&P500 (SPX) (%) -37.85 -37.01 18.16 100 89.68 [97.54
Maximum Portfolio 15.06 28.16 14.75 52.56 50.11 |49.30
Drawdown (%)
Annual Standard 10.03 20.45 13.92 16.15 20.08 |14.98

Deviation (%)

Annual a-coefficient (%) 11.72 23.71 15.29 n/a 581 |1.04




Balanced Portfolios

100% in S&P500 (SPX)

75% in S&P500 (SPX)

50% in S&P500 (SPX)

FORTEOLIO and and and
PELRSba B S Bt 0% in Portfolio #2 25% in Portfolio #2 50% in Portfolio #2
Annualized ROR (Compounded) (%) -1.01 5.63 12.03
Annualized Std. Deviation (%) 16.15 11.27 10.42
Sortino Ratio 0.02 0.75 2.39
Sharpe Ratio 0.02 0.54 1.15
Largest Drawdown (%) 52.56 29.73 13.52

100% in S&P500 (SPX)

75% in S&P500 (SPX)

50% in S&P500 (SPX)

FORTEOLID and and and
PERFORMANCE CATEGORY 0% in Portfolio #3 25% in Portfolio #3 50% in Portfolio #3
Annualized ROR (Compounded) (%) -1.01 3.24 7.40
Annualized Std. Deviation (%) 16.15 13.20 11.58
Sortino Ratio 0.02 0.39 1.03
Sharpe Ratio 0.02 0.31 0.68
Largest Drawdown (%) 52.56 39.91 24.92
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